Imed Bachar On exit laws for semigroups in weak duality

Comment.Math.Univ.Carolinae 42,4 (2001) 711-719.

Abstract: Let $\mathbb{P}:=(P_t)_{t>0}$ be a measurable semigroup and m a σ -finite positive measure on a Lusin space X. An m-exit law for \mathbb{P} is a family $(f_t)_{t>0}$ of nonnegative measurable functions on X which are finite m-a.e. and satisfy for each s,t>0 $P_sf_t=f_{s+t}$ m-a.e. An excessive function u is said to be in \mathcal{R} if there exits an m-exit law $(f_t)_{t>0}$ for \mathbb{P} such that $u=\int_0^\infty f_t dt$, m-a.e. Let \mathcal{P} be the cone of m-purely excessive functions with respect to \mathbb{P} and $\mathcal{I}mV$ be

Let \mathcal{P} be the cone of m-purely excessive functions with respect to \mathbb{P} and $\mathcal{I}mV$ be the cone of m-potential functions. It is clear that $\mathcal{I}mV \subseteq \mathcal{R} \subseteq \mathcal{P}$. In this paper we are interested in the converse inclusion. We extend some results already obtained under the assumption of the existence of a reference measure. Also, we give an integral representation of the mutual energy function.

Keywords: semigroup, weak duality, exit law **AMS Subject Classification:** 31D05, 60J45