## W.M. Mikulski

*Non-existence of some canonical constructions on connections *

Comment.Math.Univ.Carolinae 44,4 (2003) 691-695. **Abstract:**For a vector bundle functor $H:\Cal M f\to \Cal V\Cal B$ with the point property we prove that $H$ is product preserving if and only if for any $m$ and $n$ there is an $\Cal F\Cal M_{m,n}$-natural operator $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $p:Y\to M$ into connections $D(\Gamma )$ on $Hp:HY\to HM$. For a bundle functor $E:\Cal F\Cal M_{m,n}\to \Cal F\Cal M$ with some weak conditions we prove non-existence of $\Cal F\Cal M_{m,n}$-natural operators $D$ transforming connections $\Gamma $ on $(m,n)$-dimensional fibered manifolds $Y\to M$ into connections $D(\Gamma )$ on $EY\to M$.

**Keywords:** (general) connection, natural operator

**AMS Subject Classification:** 58A20

PDF