Ognjen Milatovic On m-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry

Comment.Math.Univ.Carolinae 45,1 (2004) 91-100.

Abstract: We consider a Schrödinger-type differential expression $H_V = \nabla^* \nabla + V$, where ∇ is a C^{∞} -bounded Hermitian connection on a Hermitian vector bundle Eof bounded geometry over a manifold of bounded geometry (M,g) with metric gand positive C^{∞} -bounded measure $d\mu$, and V is a locally integrable section of the bundle of endomorphisms of E. We give a sufficient condition for m-sectoriality of a realization of H_V in $L^2(E)$. In the proof we use generalized Kato's inequality as well as a result on the positivity of $u \in L^2(M)$ satisfying the equation $(\Delta_M + b)u = \nu$, where Δ_M is the scalar Laplacian on M, b > 0 is a constant and $\nu \ge 0$ is a positive distribution on M.

 ${\bf Keywords:}$ Schrödinger operator, $m\mbox{-sectorial},$ manifold, bounded geometry, singular potential

AMS Subject Classification: Primary 35P05, 58J50; Secondary 47B25, 81Q10