M. Henriksen, L. Janos, R.G. Woods Properties of one-point completions of a noncompact metrizable space

Comment.Math.Univ.Carolinae 46,1 (2005) 105-123.

Abstract: If a metrizable space X is dense in a metrizable space Y, then Y is called a metric extension of X. If T_1 and T_2 are metric extensions of X and there is a continuous map of T_2 into T_1 keeping X pointwise fixed, we write $T_1 \leq T_2$. If X is noncompact and metrizable, then $(\mathcal{M}(X), \leq)$ denotes the set of metric extensions of X, where T_1 and T_2 are identified if $T_1 \leq T_2$ and $T_2 \leq T_1$, i.e., if there is a homeomorphism of T_1 onto T_2 keeping X pointwise fixed. $(\mathcal{M}(X), \leq)$ is a large complicated poset studied extensively by V. Bel'nov [The structure of the set of metric extensions of a noncompact metrizable space, Trans. Moscow Math. Soc. 32 (1975), 1–30]. We study the poset $(\mathcal{E}(X), \leq)$ of one-point metric extensions of a locally compact metrizable metric. This poset resembles the lattice of compactifications of a locally compact space if X is also separable. For Tychonoff X, let $X^* = \beta X \setminus X$, and let $\mathcal{Z}(X)$ be the poset of zerosets of X partially ordered by set inclusion.

Theorem If X and Y are locally compact separable metrizable spaces, then $(\mathcal{E}(X), \leq)$ and $(\mathcal{E}(Y), \leq)$ are order-isomorphic iff $\mathcal{Z}(X^*)$ and $\mathcal{Z}(Y^*)$ are order-isomorphic, and iff X^* and Y^* are homeomorphic. We construct an order preserving bijection $\lambda : \mathcal{E}(X) \to \mathcal{Z}(X^*)$ such that a one-point completion in $\mathcal{E}(X)$ is locally compact iff its image under λ is clopen. We extend some results to the nonseparable case, but leave problems open. In a concluding section, we show how to construct one-point completions geometrically in some explicit cases.

Keywords: metrizable, metric extensions and completions, completely metrizable, one-point metric extensions, extension traces, zerosets, clopen sets, Stone-Čech compactification, $\beta X \setminus X$, hedgehog

AMS Subject Classification: Primary 54E45, 54E50; Secondary 54E35, 54D35