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Abstract: If a metrizable space X is dense in a metrizable space Y , then Y is
called a metric extension of X. If T1 and T2 are metric extensions of X and there is
a continuous map of T2 into T1 keeping X pointwise fixed, we write T1 ≤ T2. If X is
noncompact and metrizable, then (M(X),≤) denotes the set of metric extensions
of X, where T1 and T2 are identified if T1 ≤ T2 and T2 ≤ T1, i.e., if there is a
homeomorphism of T1 onto T2 keeping X pointwise fixed. (M(X),≤) is a large
complicated poset studied extensively by V. Bel’nov [The structure of the set of
metric extensions of a noncompact metrizable space, Trans. Moscow Math. Soc.
32 (1975), 1–30]. We study the poset (E(X),≤) of one-point metric extensions of a
locally compact metrizable space X. Each such extension is a (Cauchy) completion
of X with respect to a compatible metric. This poset resembles the lattice of
compactifications of a locally compact space if X is also separable. For Tychonoff
X, let X∗ = βX\X, and let Z(X) be the poset of zerosets of X partially ordered
by set inclusion.
Theorem If X and Y are locally compact separable metrizable spaces, then (E(X),≤
) and (E(Y ),≤) are order-isomorphic iff Z(X∗) and Z(Y ∗) are order-isomorphic,
and iff X∗ and Y ∗ are homeomorphic. We construct an order preserving bijection
λ : E(X) → Z(X∗) such that a one-point completion in E(X) is locally compact iff
its image under λ is clopen. We extend some results to the nonseparable case, but
leave problems open. In a concluding section, we show how to construct one-point
completions geometrically in some explicit cases.
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