Ryotaro Sato
 On the range of a closed operator in an L_{1}-space of vectorvalued functions

Comment.Math.Univ.Carolinae 46,2 (2005) 349-367.

Abstract

Let X be a reflexive Banach space and A be a closed operator in an L_{1}-space of X-valued functions. Then we characterize the range $R(A)$ of A as follows. Let $0 \neq \lambda_{n} \in \rho(A)$ for all $1 \leq n<\infty$, where $\rho(A)$ denotes the resolvent set of A, and assume that $\lim _{n \rightarrow \infty} \lambda_{n}=0$ and $\sup _{n>1}\left\|\lambda_{n}\left(\lambda_{n}-A\right)^{-1}\right\|<\infty$. Furthermore, assume that there exists $\lambda_{\infty} \in \rho(A)$ such that $\left\|\lambda_{\infty}\left(\lambda_{\infty}-A\right)^{-1}\right\| \leq 1$. Then $f \in R(A)$ is equivalent to $\sup _{n \geq 1}\left\|\left(\lambda_{n}-A\right)^{-1} f\right\|_{1}<\infty$. This generalizes Shaw's result for scalar-valued functions.

Keywords: reflexive Banach space, L_{1}-space of vector-valued functions, closed operator, resolvent set, range and domain, linear contraction, C_{0}-semigroup, strongly continuous cosine family of operators AMS Subject Classification: Primary 47A35; Secondary 47A05, 47D06, 47D09

