James Lefevre, Diane Donovan, Nicholas Cavenagh, Aleš Drápal Minimal and minimum size latin bitrades of each genus

Comment.Math.Univ.Carolin. 48,2 (2007) 189-203.

Abstract

Suppose that T° and T^{\star} are partial latin squares of order n, with the property that each row and each column of T° contains the same set of entries as the corresponding row or column of T^{\star}. In addition, suppose that each cell in T° contains an entry if and only if the corresponding cell in T^{\star} contains an entry, and these entries (if they exist) are different. Then the pair $T=\left(T^{\circ}, T^{\star}\right)$ forms a latin bitrade. The size of T is the total number of filled cells in T° (equivalently T^{\star}). The latin bitrade is minimal if there is no latin bitrade (U°, U^{\otimes}) such that $U^{\circ} \subseteq T^{\circ}$. Drápal (2003) represented latin bitrades in terms of row, column and entry cycles, which he proved formed a coherent digraph. This digraph can be considered as a combinatorial surface, thus associating each latin bitrade with an integer genus, which is a robust structural property of the latin bitrade. For each genus $g \geq 0$, we construct a latin bitrade of smallest possible size, and also a minimal latin bitrade of size $8 g+8$.

Keywords: latin trade, bitrade, genus
AMS Subject Classification: 05B15

