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Abstract: Given an ideal Z on w let a(Z) (a(Z)) be minimum of the cardinalities of infinite
(uncountable) maximal Z-almost disjoint subsets of [w]”. We show that a(Z,) > w if Z, is
a summable ideal; but a(Z;) = w for any tall density ideal Z; including the density zero
ideal Z. On the other hand, you have b < a(Z) for any analytic P-ideal Z, and a(Z2z) < a
for each density ideal Z;. For each ideal 7 on w denote bz and 9z the unbounding and
dominating numbers of (w”,<z) where f <z g iff {n € w: f(n) > g(n)} € Z. We show
that bz = b and 97z = 0 for each analytic P-ideal Z. Given a Borel ideal Z on w we say
that a poset P is Z-bounding if Ve € TNVF Iy € ZINV z C y. Pis Z-dominating
if 3y e ZNVF Ve € ZINV 2 C* y. For each analytic P-ideal Z if a poset P has the
Sacks property then P is Z-bounding; moreover if 7 is tall as well then the property Z-
bounding/Z-dominating implies w“-bounding/adding dominating reals, and the converses
of these two implications are false. For the density zero ideal Z we can prove more: (i) a
poset P is Z-bounding iff it has the Sacks property, (ii) if P adds a slalom capturing all
ground model reals then P is Z-dominating.
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