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Abstract: We call a topological space k-compact if every subset of size k has a complete
accumulation point in it. Let ®(u, &, A) denote the following statement: p < kK < A = cf(\)
and there is {S¢ : € < A} C [k]* such that [{¢ : |Se N A| = u}| < A whenever A € [k]<".
We show that if ®(u, k, A) holds and the space X is both p-compact and A-compact then
X is k-compact as well. Moreover, from PCF theory we deduce &(cf(x), &, k™) for every
singular cardinal k. As a corollary we get that a linearly Lindeldf and R, -compact space
is uncountably compact, that is k-compact for all uncountable cardinals k.
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