Zoltán Szentmiklóssy

Interpolation of κ -compactness and PCF

Comment.Math.Univ.Carolin. 50,2 (2009) 315 -320.

Abstract: We call a topological space κ -compact if every subset of size κ has a complete accumulation point in it. Let $\Phi(\mu, \kappa, \lambda)$ denote the following statement: $\mu < \kappa < \lambda = \operatorname{cf}(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ such that $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$ whenever $A \in [\kappa]^{<\kappa}$. We show that if $\Phi(\mu, \kappa, \lambda)$ holds and the space X is both μ -compact and λ -compact then X is κ -compact as well. Moreover, from PCF theory we deduce $\Phi(\operatorname{cf}(\kappa), \kappa, \kappa^+)$ for every singular cardinal κ . As a corollary we get that a linearly Lindelöf and \aleph_{ω} -compact space is uncountably compact, that is κ -compact for all uncountable cardinals κ .

Keywords: complete accumulation point, κ -compact space, linearly Lindelöf space, PCF theory

AMS Subject Classification: 03E04, 54A25, 54D30

References

- Arhangel'skii A.V., Homogeneity and complete accumulation points, Topology Proc. 32 (2008), 239-243.
- [2] Shelah S., Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, Oxford, 1994.
- [3] van Douwen E., The Integers and Topology, in Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan, Eds., North-Holland, Amsterdam, 1984, pp. 111-167.