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Abstract: The definitions of AP and WAP were originated in categorical topology by
A. Pultr and A. Tozzi, Equationally closed subframes and representation of quotient spaces,
Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 167 183. In general, we
have the implications: T> = KC = US = Ti, where KC is defined as the property that
every compact subset is closed and US is defined as the property that every convergent
sequence has at most one limit. And a space is called submazimal if every dense subset is
open. In this paper, we prove that: (1) every AP Ti-space is US, (2) every nodec WAP T-
space is submaximal, (3) every submaximal and collectionwise Hausdorff space is AP. We
obtain that, as corollaries, (1) every countably compact (or compact or sequentially com-
pact) AP Ti-space is Fréchet-Urysohn and US, which is a generalization of Hong’s result
in On spaces in which compact-like sets are closed, and related spaces, Commun. Korean
Math. Soc. 22 (2007), no. 2, 297 303, (2) if a space is nodec and T3, then submaximality,
AP and WAP are equivalent. Finally, we prove, by giving several counterexamples, that
(1) in the statement that every submaximal T5-space is AP, the condition T3 is necessary
and (2) there is no implication between nodec and WAP.
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