Tejinder S. Neelon

On Boman's theorem on partial regularity of mappings

Comment.Math.Univ.Carolin. 52,3 (2011) 349 -357.

Abstract: Let $\Lambda \subset \mathbb{R}^n \times \mathbb{R}^m$ and k be a positive integer. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a locally bounded map such that for each $(\xi, \eta) \in \Lambda$, the derivatives $D^j_{\xi}f(x) := \frac{d^j}{dt^j}f(x+t\xi)\Big|_{t=0}$, $j=1,2,\ldots k$, exist and are continuous. In order to conclude that any such map f is necessarily of class C^k it is necessary and sufficient that Λ be not contained in the zero-set of a nonzero homogeneous polynomial $\Phi(\xi,\eta)$ which is linear in $\eta=(\eta_1,\eta_2,\ldots,\eta_m)$ and homogeneous of degree k in $\xi=(\xi_1,\xi_2,\ldots,\xi_n)$. This generalizes a result of J. Boman for the case k=1. The statement and the proof of a theorem of Boman for the case $k=\infty$ is also extended to include the Carleman classes $C\{M_k\}$ and the Beurling classes $C(M_k)$ (Boman J., Partial regularity of mappings between Euclidean spaces, Acta Math. 119 (1967), 1–25).

Keywords: C^k maps, partial regularity, Carleman classes, Beurling classes **AMS Subject Classification:** 26B12, 26B35

References

- [1] Agbor D., Boman J., On modulus of continuity of mappings between Euclidean spaces, Math. Scandinavica, to appear.
- [2] Bierstone E., Milman P.D., Parusinski A., A function which is arc-analytic but not continuous, Proc. Amer. Math. Soc. 113 (1991), 419-423.
- [3] Bochnak J., Analytic functions in Banach spaces, Studia Math. 35 (1970), 273-292.
- [4] Boman J., Partial regularity of mappings between Euclidean spaces, Acta Math. 119 (1967), 1-25.
- [5] Hörmander L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 2003.
- [6] Korevaar J., Applications of Cⁿ capacities, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Amer. Math. Soc., Providence, RI, 1991, pp. 105-118.
- [7] Krantz S.G., Parks H.R., A Primer of Real Analytic Functions, second edition, Birkhäuser, Boston, MS, 2002.
- [8] Neelon T.S., On separate ultradifferentiability of functions, Acta Sci. Math. (Szeged) 64 (1998), 489-494.
- [9] Neelon T.S., Ultradifferentiable functions on lines in \mathbb{R}^n , Proc. Amer. Math. Soc. 127 (1999), 2099–2104.
- [10] Neelon T.S., A Bernstein-Walsh type inequality and applications, Canad. Math. Bull. 49 (2006), 256-264.
- [11] Neelon T.S., Restrictions of power series and functions to algebraic surfaces, Analysis (Munich) 29 (2009), no. 1, page 1-15.
- [12] Rudin W., Principles of Mathematical Analysis, 3rd edition, McGraw-Hill, New York, 1976.
- [13] Siciak J., A characterization of analytic functions of n real variables, Studia Mathematica 35 (1970), 293-297.