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Abstract: Let A C R® x R™ and k be a positive integer. Let f : R® — R™ be a locally

bounded map such that for each (£,7) € A, the derivatives Déf(T) = %f(T +to)|
¢ t=0

j =1,2,...k, exist and are continuous. In order to conclude that any such map f is
necessarily of class C* it is necessary and sufficient that A be not contained in the zero-set
of a nonzero homogenous polynomial ®(¢,n) which is linear in 5 = (g1,72,...,7m) and
homogeneous of degree k in £ = (£1,€2,...,&,). This generalizes a result of J. Boman
for the case k = 1. The statement and the proof of a theorem of Boman for the case
k = oo is also extended to include the Carleman classes C{M}} and the Beurling classes
C(My) (Boman J., Partial reqularity of mappings between Euclidean spaces, Acta Math.
119 (1967), 1 25).
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