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Abstract: The “kernel functor” W
k
−→ LFrm from the category W of archimedean lattice-

ordered groups with distinguished weak unit onto LFrm, of Lindelöf completely regular
frames, preserves and reflects monics. In W , monics are one-to-one, but not necessarily so
in LFrm. An embedding ϕ ∈ W for which kϕ is one-to-one is termed kernel-injective, or KI;
these are the topic of this paper. The situation is contrasted with kernel-surjective and -
preserving (KS and KP). The W -objects every embedding of which is KI are characterized;
this identifies the LFrm-objects out of which every monic is one-to-one. The issue of

when a W -map G
ϕ
−→ · is KI is reduced to when a related epicompletion of G is KI.

The poset EC(G) of epicompletions of G is reasonably well-understood; in particular,
it has the functorial maximum denoted βG, and for G = C(X), the Baire functions

B(X) ∈ EC(C(X)). The main theorem is: E ∈ EC(C(X)) is KI iff B(X)
∗

≤ E
∗

≤ βC(X)
in the order of EC(C(X)). This further identifies in a concrete way many LFrm-monics
which are/are not one-to-one.
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