Haihui Zhang

On $(4,1)^{*}$-choosability of toroidal graphs without chordal 7-cycles and adjacent 4-cycles

Comment.Math.Univ.Carolin. 54,3 (2013) 339 -344.
Abstract: A graph G is called $(k, d)^{*}$-choosable if for every list assignment L satisfying $|L(v)|=k$ for all $v \in V(G)$, there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. In this paper, it is proved that every toroidal graph without chordal 7 -cycles and adjacent 4 -cycles is $(4,1)^{*}$-choosable.

Keywords: toroidal graph; defective choosability; chord
AMS Subject Classification: 05C15, 05C78

References

[1] Chen Y., Zhu W., Wang W., Improper choosability of graphs of nonnegative characteristic, Comput. Math. Appl. 56 (2008), 2073-2078.
[2] Cushing W., Kierstead H.A., Planar graphs are 1-relaxed, 4-choosable, European J. Combin. 31 (2009), 1385-1397.
[3] Eaton N., Hull T., Defective list colorings of planar graphs, Bull. Inst. Comb. Appl. 25 (1999), 79-87.
[4] Lih K., Song Z., Wang W., Zhang K., A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001), 269-273.
[5] Škrekovski R., List improper colorings of planar graphs, Comb. Prob. Comp. 8 (1999), 293299.
[6] Škrekovski R., A Grötzsch-type theorem for list colorings with impropriety one, Comb. Prob. Comp. 8 (1999), 493-507.
[7] S̆krekovski R., List improper colorings of planar graphs with prescribed girth, Discrete Math. 214 (2000), 221-233.
[8] Dong W., Xu B., A note on list improper coloring of plane graphs, Discrete Appl. Math. 28 (2009), 433-436.
[9] Xu B., Zhang H., Every toroidal graph without adjacent triangles is $(4,1)^{*}$-choosable, Discrete Appl. Math. 155 (2007), 74-78.
[10] Zhang L., A $(3,1)^{*}$-choosable theorem on toroidal graphs, Discrete Appl. Math. 160 (2012), 332-338.

