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Abstract: Let M and R be algebras of subsets of a set Ω with M ⊂ R, and denote by
E(µ) the set of all quasi-measure extensions of a given quasi-measure µ on M to R. We
give some criteria for order boundedness of E(µ) in ba(R), in the general case as well as
for atomic µ. Order boundedness implies weak compactness of E(µ). We show that the
converse implication holds under some assumptions on M, R and µ or µ alone, but not in
general.
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