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Abstract: It is proved that real functions on R which can be represented as the difference
of two semiconvex functions with a general modulus (or of two lower C1-functions, or of two
strongly paraconvex functions) coincide with semismooth functions on R (i.e. those locally
Lipschitz functions on R for which f ′

+(x) = limt→x+ f ′

+(t) and f ′

−
(x) = limt→x− f ′

−
(t) for

each x). Further, for each modulus ω, we characterize the class DSCω of functions on R

which can be written as f = g − h, where g and h are semiconvex with modulus Cω (for
some C > 0) using a new notion of [ω]-variation. We prove that f ∈ DSCω if and only
if f is continuous and there exists D > 0 such that f ′

+ has locally finite [Dω]-variation.
This result is proved via a generalization of the classical Jordan decomposition theorem
which characterizes the differences of two ω-nondecreasing functions (defined by the in-
equality f(y) ≥ f(x)−ω(y − x) for y > x) on [a, b] as functions with finite [2ω]-variation.
The research was motivated by a recent article by J. Duda and L. Zaj́ıček on Gâteaux
differentiability of semiconvex functions, in which surfaces described by differences of two
semiconvex functions naturally appear.
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[8] Fraňková D., Regulated functions, Math. Bohem. 116 (1991), 20–59.
[9] Goffman C., Moran G., Waterman D., The structure of regulated functions, Proc. Amer.

Math. Soc. 57 (1976), 61–65.

[10] Jourani A., Thibault L., Zagrodny D., C1,ω(·)-regularity and Lipschitz-like properties of

subdifferential, Proc. London Math. Soc. 105 (2012), 189–223.
[11] Mifflin R., Semismooth and semiconvex functions in constrained optimization, SIAM J.

Control Optimization 15 (1977), 959–972.
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