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Abstract: The σ-property of a Riesz space (real vector lattice) B is: For each sequence
{bn} of positive elements of B, there is a sequence {λn} of positive reals, and b ∈ B, with
λnbn ≤ b for each n. This condition is involved in studies in Riesz spaces of abstract
Egoroff-type theorems, and of the countable lifting property. Here, we examine when
“σ” obtains for a Riesz space of continuous real-valued functions C(X). A basic result
is: For discrete X, C(X) has σ iff the cardinal |X| < b, Rothberger’s bounding number.
Consequences and generalizations use the Lindelöf number L(X): For a P -space X, if
L(X) ≤ b, then C(X) has σ. For paracompact X, if C(X) has σ, then L(X) ≤ b, and
conversely if X is also locally compact. For metrizable X, if C(X) has σ, then X is locally
compact.
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