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Abstract: We present a local convergence analysis of a one parameter Jarratt-type
method. We use this method to approximate a solution of an equation in a Banach
space setting. The semilocal convergence of this method was recently carried out in ear-
lier studies under stronger hypotheses. Numerical examples are given where earlier results
such as in [Ezquerro J.A., Hernández M.A., New iterations of R-order four with reduced

computational cost, BIT Numer. Math. 49 (2009), 325–342] cannot be used to solve
equations but our results can be applied.
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