## J. M. Almira

*Characterization of functions whose forward differences are exponential polynomials*

Comment.Math.Univ.Carolin. 58,4 (2017) 435-442.**Abstract:**Given $\{h_1,\cdots,h_{t}\}$ a finite subset of $\mathbb{R}^d$, we study the continuous complex valued functions and the Schwartz complex valued distributions $f$ defined on $\mathbb{R}^d$ with the property that the forward differences $\Delta_{h_k}^{m_k}f$ are (in distributional sense) continuous exponential polynomials for some natural numbers $m_1,\cdots,m_t$.

**Keywords:** functional equations; exponential polynomials; generalized functions; forward differences

**DOI:** DOI 10.14712/1213-7243.2015.224

**AMS Subject Classification:** 39A70 39B52

PDF