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Abstract: In set theory without the Axiom of Choice ZF, we prove that for every com-
mutative field K, the following statement DK: “On every non null K-vector space, there
exists a non null linear form” implies the existence of a “K-linear extender” on every vector
subspace of a K-vector space. This solves a question raised in Morillon M., Linear forms

and axioms of choice, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421-431. In
the second part of the paper, we generalize our results in the case of spherically complete
ultrametric valued fields, and show that Ingleton’s statement is equivalent to the existence
of “isometric linear extenders”.
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