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Abstract: Every crowded space X is ω-resolvable in the c.c.c. generic extension V Fn(|X|,2)

of the ground model. We investigate what we can say about λ-resolvability in c.c.c. generic
extensions for λ > ω. A topological space is monotonically ω1-resolvable if there is a
function f : X → ω1 such that

{x ∈ X : f(x) ≥ α} ⊂dense
X

for each α < ω1. We show that given a T1 space X the following statements are equiv-
alent: (1) X is ω1-resolvable in some c.c.c. generic extension; (2) X is monotonically

ω1-resolvable; (3) X is ω1-resolvable in the Cohen-generic extension V Fn(ω1,2). We inves-
tigate which spaces are monotonically ω1-resolvable. We show that if a topological space
X is c.c.c., and ω1 ≤ ∆(X) ≤ |X| < ωω, where ∆(X) = min{|G| : G 6= ∅ open}, then
X is monotonically ω1-resolvable. On the other hand, it is also consistent, modulo the
existence of a measurable cardinal, that there is a space Y with |Y | = ∆(Y ) = ℵω which is
not monotonically ω1-resolvable. The characterization of ω1-resolvability in c.c.c. generic
extension raises the following question: is it true that crowded spaces from the ground
model are ω-resolvable in V Fn(ω,2)? We show that (i) if V = L then every crowded c.c.c.

space X is ω-resolvable in V Fn(ω,2), (ii) if there are no weakly inaccessible cardinals, then

every crowded space X is ω-resolvable in V Fn(ω1,2). Moreover, it is also consistent, modulo
a measurable cardinal, that there is a crowded space X with |X| = ∆(X) = ω1 such that
X remains irresolvable after adding a single Cohen real.
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[1] Angoa J., Ibarra M., Tamariz-Mascarúa A., On ω-resolvable and almost-ω-resolvable spaces,
Comment. Math. Univ. Carolin. 49 (2008), no. 3, 485–508.

[2] Bolstein R., Sets of points of discontinuity , Proc. Amer. Math. Soc. 38 (1973), no. 1, 193–197.
[3] Dorantes-Aldama A., Baire irresolvable spaces with countable Souslin number , Topology

Appl. 188 (2015), 16–26.
[4] Hewitt E., A problem of set theoretic topology , Duke Math. J. 10 (1943), 309–333.
[5] Juhász I., Magidor M., On the maximal resolvability of monotonically normal spaces, Israel

J. Math. 192 (2012), 637–666.
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