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Abstract: In the realm of metric spaces we show in ZF that: (i) A metric space is
compact if and only if it is countably compact and for every ε > 0, every cover by open
balls of radius ε has a countable subcover. (ii) Every second countable metric space has
a countable base consisting of open balls if and only if the axiom of countable choice
restricted to subsets of R holds true. (iii) A countably compact metric space is separable
if and only if it is second countable.
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