Chelliah Selvaraj, Sudalaimuthu Santhakumar
Automorphism liftable modules

Comment.Math.Univ.Carolin. 59,1 (2018) 35-44.

Abstract:We introduce the notion of an automorphism liftable module and give a characterization to it. We prove that category equivalence preserves automorphism liftable. Furthermore, we characterize semisimple rings, perfect rings, hereditary rings and quasi-Frobenius rings by properties of automorphism liftable modules. Also, we study automorphism liftable modules with summand sum property (SSP) and summand intersection property (SIP).

Keywords: dual automorphism invariant module; supplemented module; semisimple ring; perfect ring; summand sum property

DOI: DOI 10.14712/1213-7243.2015.237
AMS Subject Classification: 16L30 16D40 16W20