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Abstract: In set theory without the axiom of choice (AC), we study certain non-constructive
properties of infinite-dimensional vector spaces. Among several results, we establish the
following: (i) None of the principles ACLO (AC for linearly ordered families of nonempty
sets)—and hence ACWO (AC for well-ordered families of nonempty sets)—
DC(<κ) (where κ is an uncountable regular cardinal), and “for every infinite set X,
there is a bijection f : X → {0, 1}×X”, implies the statement “there exists a field F such
that every vector space over F has a basis” in ZFA set theory. The above results settle
the corresponding open problems from Howard and Rubin “Consequences of the axiom
of choice”, and also shed light on the question of Bleicher in “Some theorems on vector
spaces and the axiom of choice” about the set-theoretic strength of the above algebraic
statement. (ii) “For every field F , for every family V = {Vi : i ∈ I} of nontrivial vector
spaces over F , there is a family F = {fi : i ∈ I} such that fi ∈ F Vi for all i ∈ I , and fi
is a nonzero linear functional” is equivalent to the full AC in ZFA set theory. (iii) “Every
infinite-dimensional vector space over R has a norm” is not provable in ZF set theory.
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