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Abstract: The arc graph δ(G) of a digraph G is the digraph with the set of arcs of G
as vertex-set, where the arcs of δ(G) join consecutive arcs of G. In 1981, S. Poljak and
V. Rödl characterized the chromatic number of δ(G) in terms of the chromatic number
of G when G is symmetric (i.e., undirected). In contrast, directed graphs with equal
chromatic numbers can have arc graphs with distinct chromatic numbers. Even though
the arc graph of a symmetric graph is not symmetric, we show that the chromatic number
of the iterated arc graph δ

k(G) still only depends on the chromatic number of G when G

is symmetric. Our proof is a rediscovery of the proof of [Poljak S., Coloring digraphs by

iterated antichains, Comment. Math. Univ. Carolin. 32 (1991), no. 2, 209–212], though
various mistakes make the original proof unreadable.
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