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Abstract: The Golomb space Nτ is the set N of positive integers endowed with the
topology τ generated by the base consisting of arithmetic progressions {a + bn : n ≥ 0}
with coprime a, b. We prove that the Golomb space Nτ has continuum many continuous
self-maps, contains a countable disjoint family of infinite closed connected subsets, the set
Π of prime numbers is a dense metrizable subspace of Nτ , and each homeomorphism h of
Nτ has the following properties: h(1) = 1, h(Π) = Π, Πh(x) = h(Πx), and h(xN) = h(x) N

for all x ∈ N. Here xN := {xn : n ∈ N} and Πx denotes the set of prime divisors of x.
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