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Abstract: A tie-point of compact space is analogous to a cut-point: the complement of
the point falls apart into two relatively clopen non-compact subsets. We review some of
the many consistency results that have depended on the construction of tie-points of N∗.
One especially important application, due to Veličković, was to the existence of nontrivial
involutions on N

∗. A tie-point of N∗ has been called symmetric if it is the unique fixed
point of an involution. We define the notion of an almost clopen set to be the closure of
one of the proper relatively clopen subsets of the complement of a tie-point. We explore
asymmetries of almost clopen subsets of N∗ in the sense of how may an almost clopen set
differ from its natural complementary almost clopen set.
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[14] Katětov M., A theorem on mappings, Comment. Math. Univ. Carolinae 8 (1967), 431–433.
[15] Koppelberg S., Minimally generated Boolean algebras, Order 5 (1989), no. 4, 393–406.
[16] Koszmider P., Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc. 351

(1999), no. 8, 3073–3117.
[17] Kunen K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the

Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980.
[18] Kunen K., Vaughan J. E., eds., Handbook of Set-theoretic Topology, North-Holland Publish-

ing, Amsterdam, 1984.
[19] Leonard I. E., Whitfield J.H.M., A classical Banach space: l∞/c0, Rocky Mountain J. Math.

13 (1983), no. 3, 531–539.
[20] Pearl E., ed., Open Problems in Topology. II, Elsevier, Amsterdam, 2007.

1



2

[21] Rabus M., On strongly discrete subsets of ω∗, Proc. Amer. Math. Soc. 118 (1993), no. 4,
1291–1300.

[22] Rabus M., An ω2-minimal Boolean algebra, Trans. Amer. Math. Soc. 348 (1996), no. 8,
3235–3244.
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