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Abstract: We discuss two ways to construct standard probability measures, called push-
down measures, from internal probability measures. We show that the Wasserstein dis-
tance between an internal probability measure and its push-down measure is infinitesimal.
As an application to standard probability theory, we show that every finitely-additive Borel
probability measure P on a separable metric space is a limit of a sequence of countably-
additive Borel probability measures {Pn}n∈N in the sense that

∫
f dP = limn→∞

∫
f dPn

for all bounded uniformly continuous real-valued function f if and only if the space is
totally bounded.
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