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Abstract: Let V be a separable real Hilbert space, k ∈ N with k < dimV, and let B be
convex and closed in V. Let P be a collection of linear k-subspaces of V. A point w ∈ B

is called exposed by P if there is a P ∈ P so that (w + P ) ∩ B = {w}. We show that,
under some natural conditions, B can be reconstituted as the convex hull of the closure
of all its exposed by P points whenever P is dense and Gδ. In addition, we discuss the
question when the set of exposed by some P points forms a Gδ-set.
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