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Induced near-homeomorphisms

WLODZIMIERZ J. CHARATONIK

Abstract. We construct examples of mappings f and g between locally connected con-
tinua such that 2 and C(f) are near-homeomorphisms while f is not, and 29 is a near-
homeomorphism, while g and C(g) are not. Similar examples for refinable mappings are
constructed.
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For a metric continuum X we denote by 2% and C(X) the hyperspaces of all
nonempty closed and of all nonempty closed connected subsets of X, respectively.
Given a mapping f : X — Y between continua X and Y, we let 2/ : 2X — 2Y
and C(f) : C(X) — C(Y) denote the corresponding induced mappings. The
following theorem is known ([7, Lemma 2.1, p. 750]).

1. Theorem. For any continua X andY and a mapping f : X — Y the following
three statements are equivalent:

(a) f: X —Y is monotone;
(b) 2f : 2% — 2Y s cell-like;
(c) C(f) : C(X) — C(Y) is cell-like.

As applications of these results we show that if f is a monotone mapping
between locally connected continua, then 2/ is a near-homeomorphism between
Hilbert cubes. Moreover, if the continua X and Y contain no free arcs, then C(f)
is a near-homeomorphism, too. We show appropriate examples of mappings f
and g such that 2/ and C(f) are near-homeomorphisms while f is not, and 29 is
a near-homeomorphism, while g and C(g) are not. Finally, we present examples
of non-refinable mappings whose induced mappings are near-homeomorphisms, in
particular are refinable. Several questions are asked.

All spaces considered in this paper are assumed to be metric. A mapping means
a continuous function. A continuum means a compact connected space. Given a
continuum X with a metric d, we denote by 2X the hyperspace of all nonempty
closed subsets of X equipped with the Hausdorff metric H defined by

H(A, B) = max{sup{d(a, B) : a € A}, sup{d(b,A) : b€ B}}
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(equivalently: with the Vietoris topology: see e.g. [6, (0.1), p.1 and (0.12), p. 10].
Furthermore, we denote by C(X) the hyperspace of all subcontinua of X, i.e.,
of all connected elements of 2%. The reader is referred to Nadler’s book [6] for
needed information on the structure of hyperspaces.

Given a mapping f : X — Y between continua X and Y, we consider mappings
(called the induced ones)

of 12X 9V and  C(f): C(X) — C(Y)
defined by

27 (A) = f(A) for every A€ 2X and C(f)(A) = f(A) for every A€ C(X).
A continuous mapping w : 2¥ — R is called a Whitney map provided that
w({z}) = 0 for each point z € X, and that if A and B are nonempty closed
subsets of X with A C B and A # B, then w(A) < w(B).

A continuum is said to have trivial shape if it is the intersection of a decreasing
sequence of compact absolute retracts. A mapping f: X — Y between continua
X and Y is called cell-like if, for each point 3 € Y the preimage f~!(y) is a
continuum of trivial shape. In particular, cell-like mappings are monotone, i.e.
the preimages of points are connected.

A mapping f : X — Y between continua X and Y is called a near-homeo-
morphism if f is the uniform limit of homeomorphisms from X onto Y. A proof
of the following proposition is straightforward.

2. Proposition. If a surjective mapping f : X — Y between continua X and
Y is a near-homeomorphism, then the two induced mappings 2f . 9X 9 and
C(f): C(X) — C(Y) are near-homeomorphisms, too.

We will show that the converse implications do not hold.
An arc ab in a space X is said to be free provided that ab \ {a,b} is an open
subset of X.

3. Theorem. Let continua X and Y be locally connected, and let a mapping
f: X — Y be monotone. Then 2% and 2¥ are homeomorphic to the Hilbert
cube, and the induced mapping 2/ is a near-homeomorphism. If, moreover, X
and Y do not contain free arcs, then C(X) and C(Y) are homeomorphic to the
Hilbert cube, and C(f) is a near-homeomorphism.

PROOF: The hyperspaces 2% and 2¥ are homeomorphic to the Hilbert cubes by
[6, (1.97), p.137]. Similarly, if X and Y do not contain free arcs, then C(X)
and C(Y) are homeomorphic to the Hilbert cube by [6, (1.98), p.138]. Then by
Theorem 1 the two induced mappings 2/ and C (f) are cell-like mappings between
Hilbert cubes, so they are near-homeomorphisms by [5, Theorem 7.5.7, p. 357 and
Corollary 7.8.4, p. 372]. O

The next example shows that even if continua X and Y are homeomorphic, the
conditions that both induced mappings are near-homeomorphisms do not imply
that f is a near-homeomorphism.
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4. Example. There are a locally connected continuum X and a mapping
f + X — X such that the induced mappings 2/ and C(f) are near-homeo-
morphisms, while f is not.

PRrROOF: To describe the example recall that a Gehman dendrite is a dendrite G
having the Cantor ternary set in [0, 1] as the set E(G) of its end points, such that
all ramification points of G (the set of which is denoted by R(G)) are of order 3
and are situated in G in such a way that F(G) = cl R(G) \ R(G) (see the figure).

Vv

Figure

Let eg and e denote two end points of G being of the maximal distance apart,
i.e., these end point of G correspond to points 0 and 1 of the Cantor set when
it is embedded into [0, 1] in the natural way. Let r be a ramification point of G
lying in the left half of G and having the maximal distance from eg. Let K be the
component of G\ {r} containing the end point e, and let D be the closure of the
union of two other components of G\ {r}. Note that D is a copy of G diminished
thrice with respect to the size of G. Thus there is a homothety h : D — G with the
center eg and the ratio 3, which maps homeomorphically D onto G. Therefore, if
g : G — D is a monotone retraction of G onto D which shrinks K to the singleton
{r} and which is the identity on D, then the composition hog : G — G is a
monotone mapping which is not a near-homeomorphism. The above construction
is due to Dr. K. Omiljanowski, see [1, Example 5.3, p. 177].

Let

f=(hog)xid:Gx[0,1] = G x [0,1],

and observe that the induced mappings 2/ and C (f) are near-homeomorphisms,
again by Theorem 3.

To see that f is not a near-homeomorphism note that f((e1,0)) = (v, 0), where
v is the highest point of G, and that each neighborhood of the point (e, 0) contains
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the Cartesian product of a triod by an interval, while small neighborhoods of (v, 0)
do not contain such products. (|

5. Example. There are a locally connected continuum X and a mapping
f X — X such that the induced mapping 2/ isa near-homeomorphism, while f
and C(f) are not.

PRrROOF: Let X = G be the Gehman dendrite, and let the mappings g and h have
the same meaning as in the previous example. Put f = hog, and observe that 2f
is a near-homeomorphism, again by Theorem 3. So, we need only to verify that
C(f) is not a near-homeomorphism. Denote, as previously, by v the top of G.
Thus f(e1) = v. Note that if N is a closed connected neighborhood of ej, then
dim C(N) = oo by [6, (1.103), p. 142], while dimension of the hyperspace of sub-
continua of a small closed connected neighborhood of v is two. Therefore there is
no homeomorphism from C(X) to C'(X) sending {e;} into a neighborhood of {v}.
This shows that C(f) is not a near-homeomorphism. The proof is complete. [

6. Questions. Let a mapping f : X — Y between continua X and Y be such
that the induced mapping C(f) is a near-homeomorphism (in particular, C'(X)
and C(Y") are homeomorphic). Does it imply that 2/ is a near-homeomorphism?
The same question, if X =Y.

Now we are going to discuss relations between refinable induced mappings. Let
us start with a definition. A surjective mapping f : X — Y is called refinable
(see [2, p.263]; see also a survey article [4] for more information) if for each € > 0
there is a surjective e-mapping g : X — Y (called e-refinement of f) which is
e-close to f, that is, p(f,g) < & (where p means the supremum metric on the
functional space YX) and diam g~ !(y) < ¢ for each y € Y. In particular, every
near-homeomorphism is refinable, while in general the continua X and Y do not
have to be homeomorphic. However, if there exists a refinable mapping from X
onto Y, then X has to be Y-like, in particular

(7 dim X <dimY.

It is known that if f is refinable, then 2/ is refinable, [3, Theorem 2.4 (i), p. 3].
Now we will investigate other possible relations between the three conditions:

(A) f is refinable;
(B) 2/ is refinable;
(C) C(f) is refinable.

8. Example. Let f : [0,1]2 — [0,1] be the natural projection. Then 2f is
a near-homeomorphism (in particular it is refinable), while C(f) and f are not
refinable.

PrROOF: 27 is a near-homeomorphism by Theorem 3. C(f) and f are not refinable
because inequality (7) is not satisfied. (]
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9. Example. Let f : [0,1]3 — [0,1]2 be the natural projection. Then 2/ and
C(f) are near-homeomorphisms (in particular they are refinable), while f is not
refinable.

PRrROOF: The argument is exactly the same as for the previous example. (I
The following two questions remain open.

10. Question (Hosokawa, [3, p.2]). Does f refinable imply C(f) refinable?

11. Question. Does C(f) refinable imply 2/ refinable?

A surjective mapping f : X — Y is called monotonely refinable if it is refin-
able, and each e-refinement of f can be chosen to be a monotone mapping. In
particular each near-homeomorphism is monotonely refinable. It is known that if
the mapping f is monotonely refinable, then the two induced mappings, 2/ and
C(f) also are monotonely refinable, [3, Theorem 2.4 (ii), p. 3]. Example 9 shows
that none of the two opposite implications is true. Furthermore, by Example 8,
2/ is monotonely refinable does not imply that C(f) is monotonely refinable.

12. Question. Does C(f) monotonely refinable imply 2/ monotonely refinable?
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