Zeroes of the Bergman kernel of Hartogs domains

Miroslav Engliš

Abstract. We exhibit a class of bounded, strongly convex Hartogs domains with realanalytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.

Keywords: Lu Qi-Keng conjecture, Hartogs domain, Bergman kernel Classification: Primary 32A07, 32H10

Let Ω be a domain in \mathbb{C}^n and $K_{\Omega}(z, w)$ its Bergman kernel. It was conjectured by Lu Qi-Keng in [Lu] that if Ω is simply connected, then $K_{\Omega}(z, w) \neq 0$ for all z and w. This conjecture was shown to be false by Skwarczynski [Skw] who exhibited an unbounded Reinhardt domain in \mathbb{C}^2 for which $K_{\Omega}(z, w)$ has a zero. Later Boas [B1] obtained even a bounded, strongly pseudoconvex counterexample to the Lu Qi-Keng conjecture and showed that the set of domains whose Bergman kernel function has a zero is dense in various topologies [B2], but a possibility still remained that $K_{\Omega}(z, w)$ is zero-free for all convex domains. Recently Boas, Fu and Straube [BFS] showed that the Bergman kernel function of the domain in \mathbb{C}^3 defined by $|z_1| + |z_2| + |z_3| < 1$ has a zero. By exhaustion it follows that when $n \geq 3$, there exist bounded, strongly convex domains with real-analytic boundary in \mathbb{C}^n whose Bergman kernel function has a zero. Subsequently Pflug and Youssfi [PY] used the "minimal ball" studied in [OPY] to construct a concrete example of smooth, bounded, strongly convex, algebraic domain in \mathbb{C}^n for any $n \geq 4$ for which the Lu Qi-Keng conjecture fails.

The aim of this short note is to call attention to the fact that there exists a large family of strongly convex domains in \mathbb{C}^n , bounded and with smooth (or even real-analytic) boundary, for which the Lu Qi-Keng conjecture fails. In fact, it turns out that in some sense such domains are generic in the class of smoothly bounded, strongly convex domains with a certain circular symmetry. The result is a simple consequence of an earlier result of the author's on the asymptotics of weighted Bergman kernels [E1] and a formula of Ligocka [Lig]. Unfortunately, it gives no information about the dimension n.

More precisely, we will consider the Hartogs domains

$$\widehat{\Omega}_m = \{(z,t) \in \Omega \times \mathbf{C}^m : ||t||^2 < F(z)\}$$

The research was supported by GA AV ČR grant No. A1019701.

where F is a positive continuous function on some domain $\Omega \subset \mathbf{C}^d$ and $m = 1, 2, \ldots$. It is well-known that $\widetilde{\Omega}_m$ is pseudoconvex if and only if Ω is pseudoconvex and $-\log F$ is plurisubharmonic, and convex if and only if Ω is convex and F is concave. Further, it is not difficult to see that $\widetilde{\Omega}_m$ is smoothly (or real-analytically) bounded if Ω is smoothly (real-analytically) bounded and $F \in C^{\infty}(\overline{\Omega})$ ($F \in C^{\omega}(\overline{\Omega})$), F = 0 on $\partial\Omega$ and $\nabla F \neq 0$ on $\partial\Omega$ (i.e. -F is a smooth resp. a real-analytic defining function for Ω), and in that case it is strongly convex if and only if F is strongly concave.

Let us say that F has property (K) if there exists a function $\tilde{F}(z, w)$ on $\Omega \times \Omega$ such that

- (i) $\tilde{F}(z, w)$ is holomorphic in z and conjugate-holomorphic in w,
- (ii) $\tilde{F}(z,z) = F(z)$,
- (iii) $|\tilde{F}(z,w)|^2 \ge \tilde{F}(z,z)\tilde{F}(w,w)$ (the "reverse Schwarz" inequality).

Observe that any function having property (K) is necessarily real-analytic on Ω , and also (iii) and the positivity of F imply that the extension \tilde{F} does not vanish on $\Omega \times \Omega$. Our result is the following.

Theorem. Let Ω be a bounded domain in \mathbb{C}^d , F a bounded positive continuous function on Ω such that $\log F$ is concave. Assume that there exists a sequence of integers $0 < m_1 < m_2 < \ldots$ such that for each m_j , $K_{\widetilde{\Omega}m_j}((z,0),(w,0)) \neq 0 \forall z, w \in \Omega$. Then F has property (K).

Corollary. Let Ω be a bounded strongly convex domain in \mathbb{C}^d with C^∞ boundary and -F a strongly convex C^∞ defining function for Ω such that F does not have property (K). Then there exists an integer m_0 such that $\forall m \geq m_0, \widetilde{\Omega}_m$ is a bounded, strongly convex domain with C^∞ boundary whose Bergman kernel function has a zero. The same assertion holds with C^∞ replaced by C^ω .

Observe that a generic C^{∞} function is not real-analytic, and, likewise, a generic real-analytic function on Ω fails to have a sesqui-holomorphic extension to all of $\Omega \times \Omega$ (even though such extension always exists in a neighbourhood of the diagonal, by the definition of real-analyticity), i.e. to satisfy the conditions (i) and (ii) above. (Indeed, after making the change of coordinates z = u + iv, $w = \overline{u} + i\overline{v}$, the domain $\Omega \times \Omega$ gets transformed into some other domain $U \subset \mathbf{C}^{2d}$, its diagonal into $U \cap \mathbf{R}^{2d}$, and the assertion becomes apparent; cf. Example 2 below.) Thus the functions F to which the last Corollary applies are generic among the strongly concave, C^{∞} - (resp. C^{ω} -) smooth positively signed defining functions for Ω .

PROOF OF THE THEOREM: According to [Lig, Proposition 0] (cf. also [E2, Proposition 0], and [BFS, Section 2]),

$$K_{\widetilde{\Omega}_m}((z,t),(w,s)) = \sum_{k=0}^{\infty} \frac{(k+m)!}{k!\pi^m} K_{\Omega,F^{m+k}}(z,w) \langle t,s \rangle^k$$

where $K_{\Omega,F^{m+k}}$ stands for the Bergman kernel on Ω with respect to the weight $F(z)^{m+k}$, and $\langle \cdot, \cdot \rangle$ denotes the scalar product in \mathbb{C}^m . In particular,

$$K_{\widetilde{\Omega}_m}((z,0),(w,0)) = \frac{m!}{\pi^m} K_{\Omega,F^m}(z,w).$$

Our hypothesis therefore implies that

$$K_{\Omega,F^{m_j}}(z,w) \neq 0 \qquad \forall \, z, w \in \Omega \quad \forall \, j=1,2,\dots$$

Note that in view of the boundedness of F and Ω , the function constant 1 belongs to the weighted Bergman spaces $L^2_{\text{hol}}(\Omega, F^{\alpha} d\lambda)$ for any $\alpha > 0$ ($d\lambda$ is the Lebesgue measure). By [E1, Theorem A and Theorem C] (with $G \equiv 1$ and $U = \Omega$), the assertion follows.

PROOF OF THE COROLLARY: Immediate from the Theorem, the above remarks concerning (strong) convexity and C^{∞} - (resp. C^{ω} -) boundedness of $\widetilde{\Omega}_m$, and the elementary fact that log F is (strongly) concave whenever F is.

Example 1. Let f be a strongly convex smooth function on \mathbb{C}^d which satisfies $\lim_{|z|\to\infty} |f(z)| = +\infty$ and which is not real-analytic at some point z_0 . Let $c > f(z_0)$ and take $\Omega = \{z : f(z) < c\}$ and F(z) = c - f(z). As F is not real-analytic at z_0 , it cannot have property (K).

Example 2. Let f be a function holomorphic in a neighbourhood of the interval [0,1] in the complex plane, with f' < 0, f'' < 0 on [0,1] and f(1) = 0, which cannot be extended holomorphically to the whole unit disc **D**. (For instance, $f(x) = (\frac{2}{3} - \frac{2}{2x+1}) + 5(1-x)$.) Take $\Omega = \mathbf{D}, F(z) = f(|z|^2)$. Then the only candidate for an \tilde{F} satisfying (i) and (ii) is $\tilde{F}(z, w) = f(z\overline{w})$, which however is not defined on all of $\mathbf{D} \times \mathbf{D}$. Hence, F is real-analytic and does not have property (K).

Example 3. Let $\Omega = \mathbf{D}$ and $F(z) = f(|z|^2)$ where $f(x) = (x-1)(x+\frac{3}{4})(x-\frac{11}{4})$. This time $\tilde{F}(z, w) = f(z\overline{w})$ is defined on all of $\Omega \times \Omega$, but (iii) fails since $f(-\frac{3}{4}) = 0$. Consequently, F is a C^{ω} function on \mathbf{D} , even possessing a sesqui-holomorphic extension to $\mathbf{D} \times \mathbf{D}$, which does not have property (K).

References

- [B1] Boas H.P., Counterexample to the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 97 (1986), 374–375.
- [B2] Boas H.P., The Lu Qi-Keng conjecture fails generically, Proc. Amer. Math. Soc. 124 (1996), 2021–2027.
- [BFS] Boas H.P., Fu S., Straube E., The Bergman kernel function: explicit formulas and zeroes, Proc. Amer. Math. Soc. 127 (1999), 805–811.
- [E1] Engliš M., Asymptotic behaviour of reproducing kernels of weighted Bergman spaces, Trans. Amer. Math. Soc. 349 (1997), 3717–3735.
- [E2] Engliš M., A Forelli-Rudin construction and asymptotics of weighted Bergman kernels, preprint, 1998.

M. Engliš

- [Lig] Ligocka E., On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), 257–272.
- [Lu] Lu Q.-K. (K.H. Look), On Kaehler manifolds with constant curvature, Chinese Math. 8 (1966), 283–298.
- [OPY] Oeljeklaus K., Pflug P., Youssfi E.H., The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915–928.
- [PY] Pflug P., Youssfi E.H., The Lu Qi-Keng conjecture fails for strongly convex algebraic domains, Arch. Math. 71 (1998), 240–245.
- [Skw] Skwarczynski M., Biholomorphic invariants related to the Bergman function, Dissertationes Math. **173** (1980).

MATHEMATICAL INSTITUTE AV ČR, ŽITNÁ 25, 115 67 PRAGUE 1, CZECH REPUBLIC *E-mail*: englis@math.cas.cz

(Received May 10, 1999)