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Topological sequence entropy for maps of the circle

Roman Hric

Abstract. A continuous map f of the interval is chaotic iff there is an increasing sequence
of nonnegative integers T such that the topological sequence entropy of f relative to T ,
hT (f), is positive ([FS]). On the other hand, for any increasing sequence of nonnegative
integers T there is a chaotic map f of the interval such that hT (f) = 0 ([H]). We prove
that the same results hold for maps of the circle. We also prove some preliminary results
concerning topological sequence entropy for maps of general compact metric spaces.

Keywords: chaotic map, circle map, topological sequence entropy

Classification: Primary 26A18, 54H20, 58F13

Introduction

Let (X, ρ) be a compact metric space; denote by C(X) the space of all con-
tinuous maps of this space into itself. We will pay a special attention to the
case when X is the circle S = {z ∈ C; |z| = 1}; the metric on S is given by
‖x, y‖ = dist(Π−1x,Π−1y) where Π denotes the natural projection of the real

line R onto S, i.e., Π(x) = e2πix. By N we denote the set of all positive integers.
If T = (ti)

∞

i=1 is an arbitrary sequence of nonnegative integers then the (T, f, n)-

trajectory of x ∈ X is the sequence (f tix)ni=1. The set of all periodic points of f
is denoted by Per(f) and the set of periods of all periodic points of f by P (f).
A set A ⊆ X is called a retract of X if there is a map r : X → A such that
r(a) = a for every a ∈ A.

Definition. Let (X, ρ) be a compact metric space. A map f ∈ C(X) is said to
be chaotic if there are points x, y ∈ X such that

lim sup
i→∞

ρ(f ix, f iy) > 0,

lim inf
i→∞

ρ(f ix, f iy) = 0.

(The set {x, y} is called a scrambled set.) A map is called nonchaotic if it is not
chaotic.

Remark. This definition of a chaotic map is equivalent to the original one by Li
and Yorke in [LY] for maps of the interval (see [KuS]) and for maps of the circle
(see [Ku]).
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Definition. Let (X, ρ) be a compact metric space, f ∈ C(X) and T = (ti)
∞

i=1
be an increasing sequence of nonnegative integers. We say that a set A ⊆ X
(T, f, ε, n)-spans a set B ⊆ X if for any x ∈ B there is y ∈ A such that
ρ(f tix, f tiy) < ε for all 1 ≤ i ≤ n. (We also say that the point y spans the
point x.)

Definition ([G]). Let (X, ρ) be a compact metric space, f ∈ C(X) and T =
(ti)

∞

i=1 be an increasing sequence of nonnegative integers.
A set A ⊆ X is said to be (T, f, ε, n)-separated if for any x, y ∈ A, x 6= y there

is an index i, 1 ≤ i ≤ n, such that ρ(f tix, f tiy) > ε. Let Sep(T, f, ε, n) denote
the largest of cardinalities of all (T, f, ε, n)-separated sets. Put

Sep(T, f) = lim
ε→0
lim sup
n→∞

1

n
log Sep(T, f, ε, n).

A subset of X is said to be a (T, f, ε, n)-span if it (T, f, ε, n)-spans X . Let
Span(T, f, ε, n) denote the smallest of cardinalities of all (T, f, ε, n)-spans. Put

Span(T, f) = lim
ε→0
lim sup
n→∞

1

n
log Span(T, f, ε, n).

Then Sep(T, f) = Span(T, f) (see [G]) and we define the topological sequence
entropy of f relative to T , hT (f), to be Sep(T, f).

Remark. If ti = i − 1, i = 1, 2, . . . then hT (f) is the topological entropy h(f)
of f . Topological sequence entropy can be viewed as the topological entropy of
the nonautonomous dynamical system given on the space X by the sequence of
maps f t1 , f t2−t1 , f t3−t2 , . . . (see [KS]).
In [FS] Franzová and Smı́tal proved that a continuous map f of the interval

is chaotic if and only if there is an increasing sequence of nonnegative integers T
such that hT (f) > 0. A natural question arose whether there is some universal
sequence which characterizes chaos. This is not the case as it was proved in [H]
— for any increasing sequence of nonnegative integers T there is a chaotic map
f with hT (f) = 0. The main aim of this paper is to prove the same results for
maps of the circle.

Theorem 1. A map f ∈ C(S) is chaotic if and only if there is an increasing
sequence of nonnegative integers T such that hT (f) > 0.

Remark. Theorem 1 does not hold in general, even for triangular maps of the
square. There is a nonchaotic triangular map with positive topological sequence
entropy relative to a suitable sequence (see [FPS, Theorem 2]) and, on the other
hand, there is a chaotic triangular map with zero topological sequence entropy
relative to any sequence (see [FPS, Theorem 3]).

Theorem 2. LetX be a compact metric space containing a homeomorphic image
of an interval and let T be an increasing sequence of nonnegative integers. Then
there is a chaotic map f ∈ C(X) such that hT (f) = 0.

Remark. The analysis of the proof of Theorem 6 in [H] shows that Theorem 2
holds also when X is a Cantor set.
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Corollary 3. Let T be an increasing sequence of nonnegative integers. Then
there is a chaotic map f ∈ C(S) such that hT (f) = 0.

Preliminary results

Let (X, ρ) and (Y, σ) be compact metric spaces, f ∈ C(X), g ∈ C(Y ), and let
π : X → Y be a continuous map such that the diagram

X
f

−−−−→ X

π





y





y

π

Y
g

−−−−→ Y

commutes. In this situation we have the following

Lemma 4. Let T be an increasing sequence of nonnegative integers. Then

(i) if π is injective then hT (f) ≤ hT (g);
(ii) if π is surjective then hT (f) ≥ hT (g);
(iii) if π is bijective then hT (f) = hT (g).

Proof:

(ii) and (iii). See [G, p. 332].

(i). We have that π is a homeomorphism between X and πX . Thus, by (iii),
hT (f) = hT (g|πX). Now let E ⊆ πX be (T, g|πX , ε, n)-separated. Trivially, it is
also (T, g, ε, n)-separated which gives hT (g|πX ) ≤ hT (g). �

It is known that some of the properties of topological entropy are not satisfied
by topological sequence entropy. For example, contrary to the formula h(fk) =
k · h(f), an analogous formula for topological sequence entropy does not hold —
it is even possible that hS(f) < hT (f) for a subsequence S of T ([L]). In this case
the following result can be useful.

Theorem 5. Let (X, ρ) be a compact metric space, f ∈ C(X), T be an increasing
sequence of nonnegative integers and k be a positive integer. Then there is an
increasing sequence of nonnegative integers S such that hS(f

k) ≥ hT (f).

Proof: SinceX is compact, f, f2, . . . , fk−1 are equicontinuous, i.e., for any ε > 0
there is δ = δ(ε) > 0 such that if x, y ∈ X and ρ(x, y) ≤ δ then ρ(f ix, f iy) < ε
for i = 1, . . . , k − 1. We may assume that δ ≤ ε.
Let T = (ti)

∞

i=1. Define S = (si)
∞

i=1 as follows. Put s1 =
[

t1
k

]

(where [·] stands

for the integer part) and for anym let sm+1 will be the first
[

ti
k

]

greater than sm.
Let E ⊆ X be an (T, f, ε, n)-separated set. We are going to show that E is

a (S, fk, δ, m)-separated set where m is such that sm =
[

tn
k

]

. To this end let

x, y ∈ E, x 6= y. Then for some i ∈ {1, 2, . . . , n}, ρ(f tix, f tiy) > ε. Take j with

sj =
[

ti
k

]

. Then j ≤ m and from the definition of δ we have ρ(fk·sjx, fk·sjy) > δ.

Thus E is an (S, fk, δ, m)-separated set. From this we have Sep(T, f, ε, n) ≤
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Sep(S, fk, δ, m). Now, hT (f) = lim
ε→0
lim sup
n→∞

1
n log Sep(T, f, ε, n) ≤

lim
δ→0
lim sup
n→∞

1
n log Sep(S, fk, δ, m) ≤ lim

δ→0
lim sup
m→∞

1
m log Sep(S, fk, δ, m) = hS(f

k).

�

Corollary 6. Let X be a compact metric space, f ∈ C(X) and k be a positive
integer. Then the following two conditions are equivalent:

(i) there is an increasing sequence T of nonnegative integers such that
hT (f) > 0;

(ii) there is an increasing sequence T of nonnegative integers such that

hT (f
k) > 0.

In the sequel we will discuss the space of maps of the circle. The space C(S)
can be decomposed into the following classes (see [ALM, Chapter 3], cf. also [Ku,
p. 384]):

C1 = {f ∈ C(S); f has no periodic point};
C2 = {f ∈ C(S); P (fn) = {1} or P (fn) = {1, 2, 22, . . . } for some n ∈ N};
C3 = {f ∈ C(S); P (fn) = N for some n ∈ N}.

According to this we will distinguish three different cases.

Maps withou t periodic points

In all of this section we assume f ∈ C(S) to have no periodic point. We are
going to show that Theorem 1 holds for such maps. Since, by [Ku, Theorem B], f
is not chaotic, we need only to show that hT (f) = 0 for any increasing sequence T .
So fix T . If f is a homeomorphism then hT (f) = 0 by [KS, TheoremD]. Otherwise,
by [AK, Theorem 1 and Theorem 2], there is a nowhere dense perfect set E which
is the only ω-limit set of f , all (closed) contiguous intervals are wandering, the
preimage of any contiguous interval is a contiguous interval, the image of any
contiguous interval is either a contiguous interval or a point from E. Moreover,
f |E is monotone. By linear extension of f |E we obtain a monotone map g ∈ C(S).
By [KS, Theorem D], hT (g) = 0. By Lemma 4(i), hT (f |E) ≤ hT (g). Hence,

lim supn→∞

1
n log Span(T, f |E , ε, n) = 0 for any ε > 0.

Now fix an arbitrary ε > 0. We are going to estimate Span(T, f, ε, n). Let
I1, . . . , Ik be all contiguous intervals longer than

ε
2 . Let A be a (T, f |E , ε

2 , n)-span.

Take any point x whose (T, f, n)-trajectory lies in S \
⋃k

i=1 Ii. If x ∈ E then x is
(T, f, ε, n)-spanned by A. For x /∈ E put y to be an endpoint of the contiguous
interval which contains x. Then ‖f tix, f tiy‖ ≤ ε

2 for all 1 ≤ i ≤ n. Since y ∈ E
is (T, f, ε

2 , n)-spanned by a point z ∈ A, the set A obviously (T, f, ε, n)-spans all
such points x.

So it remains to consider those points whose (T, f, n)-trajectories meet
⋃k

i=1 Ii.

Fix N ∈ N such thatN > 1
ε . We are going to show that there is a set of cardinality

at most n · k · Nk which (T, f, ε, n)-spans all considered points. It is sufficient

to show that there is a set with cardinality at most Nk which (T, f, ε, n)-spans
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the set I(ti, Ij) = {x ∈ S; f tix ∈ Ij} (for fixed 1 ≤ i ≤ n and 1 ≤ j ≤ k).
First, it is obvious that I(ti, Ij) is a contiguous interval. Consider its (T, f, n)-

trajectory (f t1I(ti, Ij), . . . , f
tnI(ti, Ij)). Each element in this trajectory is either

a contiguous interval or a point from E. At most k of them have lengths greater
than or equal to ε— cut each of such elements to N segments shorter than ε. All
the other elements of the trajectory will be considered to be segments themselves.
To each x ∈ I(ti, Ij) assign its code — the sequence (S1(x), . . . , Sn(x)) where

Sl(x) is the segment containing f tlx. We have at most Nk different codes and all
points with the same code can be (T, f, ε, n)-spanned by one point.
From what has been said above we see that Span(T, f, ε, n) ≤ Span(T, f |E , ε

2 , n)

+n·k ·Nk which finishes the proof of Theorem 1 for maps without periodic points.

Maps with periodic points

We will first deal with the case C2. We know that for any n ∈ N f is chaotic
if and only if fn is chaotic. Taking into account Corollary 6 we can without loss
of generality assume that P (f) = {1} or P (f) = {1, 2, 22, . . . }. Since f has a
fixed point, by [Ku, Lemma 2.5] there is a lifting F and an F -invariant compact
interval J longer than 1. In the following discussion of the case C2 we will write F
and Π instead of F |J and Π|J , respectively, as in the next commutative diagram

J
F

−−−−→ J

Π





y





yΠ

S
f

−−−−→ S

Note that if x, y ∈ J then ‖Πx,Πy‖ ≤ |x−y| with the equality whenever |x−y| ≤
1
2 .

Lemma 7. F is chaotic if and only if f is chaotic.

Proof: Let F be chaotic. Then there are two points u, v ∈ J such that

lim sup
i→∞

|F iu − F iv| = γ > 0;(1)

lim inf
i→∞

|F iu − F iv| = 0.(2)

We claim that Πu,Πv form a scrambled set for f . From (2),

lim infi→∞ ‖f iΠu, f iΠv‖ = 0. Now put η = min{γ, 12}. Take 0 < δ < η such
that |x − y| < δ implies |Fx − Fy| < η. From this and (1) and (2) we have

that |F iu − F iv| ∈ [δ, η] infinitely many times. Since η ≤ 1
2 , the same holds for

‖f iΠu, f iΠv‖. Thus lim supi→∞
‖f iΠu, f iΠv‖ ≥ δ > 0.

Let F be nonchaotic. Then by [JS, Theorem 3] every trajectory of F is ap-
proximable by cycles, i.e. for any ε > 0 and any x ∈ J there is some periodic
point p ∈ Per(F ) such that

(3) |F ix − F ip| < ε for all i = 0, 1, 2, . . . .
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Fix any z ∈ S. Take any of its preimages x ∈ Π−1z. Let ε > 0 be arbitrary,
p ∈ Per(F ) such that (3) is satisfied. Clearly, Πp is a periodic point for f and
‖f iz, f iΠp‖ < ε for all i = 0, 1, 2, . . . . Thus f is not chaotic by [Ku, Theorem A].

�

Lemma 8. Let F be chaotic. Then there is an increasing sequence T such that
hT (f) > 0.

Proof: If F has a periodic point of period k · 2m where k > 1 is odd then, by
Sharkovsky theorem, it has also a periodic point of period k′ · 2m where k′ >
diamJ + 1 is odd. Since Π|J is at most [diamJ ] + 1 to one, f has a periodic

point of period k′′ · 2m
′

where k′′ > 1 is odd. This is a contradiction since P (f)
is {1} or {1, 2, 22, . . . }. So F is of type 2∞, chaotic. By [S] there is an orbit of
periodic intervals of period p > diamJ such that F p is chaotic on each of them.
At least one interval K in this orbit is shorter than 1. Then Π|K is injective
and so F p|K is topologically conjugate with fp|ΠK . By [FS, Theorem] there is
an increasing sequence of nonnegative integers S such that hS(F

p|K) > 0. Since
hp·S(f) = hS(f

p) it is sufficient to use Lemma 4(iii) and (i) to get hp·S(f) ≥
hS(f

p|πK) = hS(F
p|K) > 0. �

We are going to show that Theorem 1 holds for maps from the class C2. Let
f ∈ C2 be chaotic. Then we obtain the required result using Lemma 7 and
Lemma 8.
Now let f ∈ C2 and let there be an increasing sequence of nonnegative integers

T such that hT (f) > 0. Theorem 4(ii) then implies that hT (F ) > 0 where F has
the same meaning as above. By [FS, Theorem] F is chaotic. Lemma 7 finishes
the proof.
Finally we will discuss the situation for maps from the remaining class C3. So

let P (fn) = N for some n. By [BC, Theorem IX.28(i) and (ii)] we have that
h(fn) is positive and so is h(f). By the same theorem, conditions (ii) and (iii),
we have that fm·n is strictly turbulent for a suitable m ∈ N which implies that
f is chaotic for the same reason as in the interval case. This finishes the proof of
Theorem 1.

Proof of Theorem 2

The space X contains a homeomorphic image J of the interval [0, 1]. The set
J is a retract of X by [HY, Theorem 2-34]. Let r : X → J be a corresponding
retraction. By [H, Theorem 6] there is a chaotic onto map g ∈ C([0, 1]) such
that hT (g) = 0. Let g̃ ∈ C(J) be a map topologically conjugate with g. Define
f ∈ C(X) by f = g̃ ◦ r. Since

⋂

∞

i=0 f iX = fX = J , we have that hT (f) =
hT (f |J ) = 0 by [BCJ, Proposition 1].
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