Topological sequence entropy for maps of the circle

Roman Hric

Abstract. A continuous map f of the interval is chaotic iff there is an increasing sequence of nonnegative integers T such that the topological sequence entropy of f relative to T, $h_T(f)$, is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers T there is a chaotic map f of the interval such that $h_T(f) = 0$ ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric spaces.

Keywords: chaotic map, circle map, topological sequence entropy *Classification:* Primary 26A18, 54H20, 58F13

Introduction

Let (X, ρ) be a compact metric space; denote by C(X) the space of all continuous maps of this space into itself. We will pay a special attention to the case when X is the circle $\mathbb{S} = \{z \in \mathbb{C}; |z| = 1\}$; the metric on \mathbb{S} is given by $\|x, y\| = \operatorname{dist}(\Pi^{-1}x, \Pi^{-1}y)$ where Π denotes the natural projection of the real line \mathbb{R} onto \mathbb{S} , i.e., $\Pi(x) = e^{2\pi i x}$. By \mathbb{N} we denote the set of all positive integers. If $T = (t_i)_{i=1}^{\infty}$ is an arbitrary sequence of nonnegative integers then the (T, f, n)trajectory of $x \in X$ is the sequence $(f^{t_i}x)_{i=1}^n$. The set of all periodic points of fis denoted by $\operatorname{Per}(f)$ and the set of periods of all periodic points of f by P(f). A set $A \subseteq X$ is called a *retract* of X if there is a map $r : X \to A$ such that r(a) = a for every $a \in A$.

Definition. Let (X, ρ) be a compact metric space. A map $f \in C(X)$ is said to be *chaotic* if there are points $x, y \in X$ such that

$$\begin{split} &\limsup_{i \to \infty} \rho(f^i x, f^i y) > 0, \\ &\lim_{i \to \infty} \inf \rho(f^i x, f^i y) = 0. \end{split}$$

(The set $\{x, y\}$ is called a *scrambled* set.) A map is called *nonchaotic* if it is not chaotic.

Remark. This definition of a chaotic map is equivalent to the original one by Li and Yorke in [LY] for maps of the interval (see [KuS]) and for maps of the circle (see [Ku]).

The author has been supported by the Slovak grant agency, grant number 1/4015/97.

Definition. Let (X, ρ) be a compact metric space, $f \in C(X)$ and $T = (t_i)_{i=1}^{\infty}$ be an increasing sequence of nonnegative integers. We say that a set $A \subseteq X$ (T, f, ε, n) -spans a set $B \subseteq X$ if for any $x \in B$ there is $y \in A$ such that $\rho(f^{t_i}x, f^{t_i}y) < \varepsilon$ for all $1 \leq i \leq n$. (We also say that the point y spans the point x.)

Definition ([G]). Let (X, ρ) be a compact metric space, $f \in C(X)$ and $T = (t_i)_{i=1}^{\infty}$ be an increasing sequence of nonnegative integers.

A set $A \subseteq X$ is said to be (T, f, ε, n) -separated if for any $x, y \in A, x \neq y$ there is an index $i, 1 \leq i \leq n$, such that $\rho(f^{t_i}x, f^{t_i}y) > \varepsilon$. Let $\text{Sep}(T, f, \varepsilon, n)$ denote the largest of cardinalities of all (T, f, ε, n) -separated sets. Put

$$\operatorname{Sep}(T, f) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Sep}(T, f, \varepsilon, n).$$

A subset of X is said to be a (T, f, ε, n) -span if it (T, f, ε, n) -spans X. Let $\text{Span}(T, f, \varepsilon, n)$ denote the smallest of cardinalities of all (T, f, ε, n) -spans. Put

$$\operatorname{Span}(T, f) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Span}(T, f, \varepsilon, n).$$

Then Sep(T, f) = Span(T, f) (see [G]) and we define the topological sequence entropy of f relative to T, $h_T(f)$, to be Sep(T, f).

Remark. If $t_i = i - 1$, i = 1, 2, ... then $h_T(f)$ is the topological entropy h(f) of f. Topological sequence entropy can be viewed as the topological entropy of the nonautonomous dynamical system given on the space X by the sequence of maps $f^{t_1}, f^{t_2-t_1}, f^{t_3-t_2}, ...$ (see [KS]).

In [FS] Franzová and Smítal proved that a continuous map f of the interval is chaotic if and only if there is an increasing sequence of nonnegative integers Tsuch that $h_T(f) > 0$. A natural question arose whether there is some universal sequence which characterizes chaos. This is not the case as it was proved in [H] — for any increasing sequence of nonnegative integers T there is a chaotic map f with $h_T(f) = 0$. The main aim of this paper is to prove the same results for maps of the circle.

Theorem 1. A map $f \in C(\mathbb{S})$ is chaotic if and only if there is an increasing sequence of nonnegative integers T such that $h_T(f) > 0$.

Remark. Theorem 1 does not hold in general, even for triangular maps of the square. There is a nonchaotic triangular map with positive topological sequence entropy relative to a suitable sequence (see [FPS, Theorem 2]) and, on the other hand, there is a chaotic triangular map with zero topological sequence entropy relative to any sequence (see [FPS, Theorem 3]).

Theorem 2. Let X be a compact metric space containing a homeomorphic image of an interval and let T be an increasing sequence of nonnegative integers. Then there is a chaotic map $f \in C(X)$ such that $h_T(f) = 0$.

Remark. The analysis of the proof of Theorem 6 in [H] shows that Theorem 2 holds also when X is a Cantor set.

Corollary 3. Let T be an increasing sequence of nonnegative integers. Then there is a chaotic map $f \in C(\mathbb{S})$ such that $h_T(f) = 0$.

Preliminary results

Let (X, ρ) and (Y, σ) be compact metric spaces, $f \in C(X)$, $g \in C(Y)$, and let $\pi : X \to Y$ be a continuous map such that the diagram

commutes. In this situation we have the following

Lemma 4. Let T be an increasing sequence of nonnegative integers. Then

(i) if π is injective then $h_T(f) \leq h_T(g)$;

- (ii) if π is surjective then $h_T(f) \ge h_T(g)$;
- (iii) if π is bijective then $h_T(f) = h_T(g)$.

Proof:

(ii) and (iii). See [G, p. 332].

(i). We have that π is a homeomorphism between X and πX . Thus, by (iii), $h_T(f) = h_T(g|_{\pi X})$. Now let $E \subseteq \pi X$ be $(T, g|_{\pi X}, \varepsilon, n)$ -separated. Trivially, it is also (T, g, ε, n) -separated which gives $h_T(g|_{\pi X}) \leq h_T(g)$.

It is known that some of the properties of topological entropy are not satisfied by topological sequence entropy. For example, contrary to the formula $h(f^k) = k \cdot h(f)$, an analogous formula for topological sequence entropy does not hold it is even possible that $h_S(f) < h_T(f)$ for a subsequence S of T ([L]). In this case the following result can be useful.

Theorem 5. Let (X, ρ) be a compact metric space, $f \in C(X)$, T be an increasing sequence of nonnegative integers and k be a positive integer. Then there is an increasing sequence of nonnegative integers S such that $h_S(f^k) \ge h_T(f)$.

PROOF: Since X is compact, f, f^2, \ldots, f^{k-1} are equicontinuous, i.e., for any $\varepsilon > 0$ there is $\delta = \delta(\varepsilon) > 0$ such that if $x, y \in X$ and $\rho(x, y) \leq \delta$ then $\rho(f^i x, f^i y) < \varepsilon$ for $i = 1, \ldots, k-1$. We may assume that $\delta \leq \varepsilon$.

Let $T = (t_i)_{i=1}^{\infty}$. Define $S = (s_i)_{i=1}^{\infty}$ as follows. Put $s_1 = \begin{bmatrix} \frac{t_1}{k} \end{bmatrix}$ (where $[\cdot]$ stands for the integer part) and for any m let s_{m+1} will be the first $\begin{bmatrix} \frac{t_i}{k} \end{bmatrix}$ greater than s_m .

Let $E \subseteq X$ be an (T, f, ε, n) -separated set. We are going to show that E is a (S, f^k, δ, m) -separated set where m is such that $s_m = \begin{bmatrix} \frac{t_n}{k} \end{bmatrix}$. To this end let $x, y \in E, x \neq y$. Then for some $i \in \{1, 2, ..., n\}, \rho(f^{t_i}x, f^{t_i}y) > \varepsilon$. Take j with $s_j = \begin{bmatrix} \frac{t_i}{k} \end{bmatrix}$. Then $j \leq m$ and from the definition of δ we have $\rho(f^{k \cdot s_j}x, f^{k \cdot s_j}y) > \delta$. Thus E is an (S, f^k, δ, m) -separated set. From this we have $\operatorname{Sep}(T, f, \varepsilon, n) \leq$

R. Hric

$$\begin{split} &\operatorname{Sep}(S, f^k, \delta, m). \text{ Now, } h_T(f) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Sep}(T, f, \varepsilon, n) \leq \\ &\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Sep}(S, f^k, \delta, m) \leq \lim_{\delta \to 0} \limsup_{m \to \infty} \frac{1}{m} \log \operatorname{Sep}(S, f^k, \delta, m) = h_S(f^k). \end{split}$$

Corollary 6. Let X be a compact metric space, $f \in C(X)$ and k be a positive integer. Then the following two conditions are equivalent:

- (i) there is an increasing sequence T of nonnegative integers such that h_T(f) > 0;
- (ii) there is an increasing sequence T of nonnegative integers such that $h_T(f^k) > 0.$

In the sequel we will discuss the space of maps of the circle. The space C(S) can be decomposed into the following classes (see [ALM, Chapter 3], cf. also [Ku, p. 384]):

$$C_1 = \{ f \in C(\mathbb{S}); \ f \text{ has no periodic point} \};$$

$$C_2 = \{ f \in C(\mathbb{S}); \ P(f^n) = \{1\} \text{ or } P(f^n) = \{1, 2, 2^2, \dots\} \text{ for some } n \in \mathbb{N} \};$$

$$C_3 = \{ f \in C(\mathbb{S}); \ P(f^n) = \mathbb{N} \text{ for some } n \in \mathbb{N} \}.$$

According to this we will distinguish three different cases.

Maps withou t periodic points

In all of this section we assume $f \in C(\mathbb{S})$ to have no periodic point. We are going to show that Theorem 1 holds for such maps. Since, by [Ku, Theorem B], fis not chaotic, we need only to show that $h_T(f) = 0$ for any increasing sequence T. So fix T. If f is a homeomorphism then $h_T(f) = 0$ by [KS, Theorem D]. Otherwise, by [AK, Theorem 1 and Theorem 2], there is a nowhere dense perfect set E which is the only ω -limit set of f, all (closed) contiguous intervals are wandering, the preimage of any contiguous interval is a contiguous interval, the image of any contiguous interval is either a contiguous interval or a point from E. Moreover, $f|_E$ is monotone. By linear extension of $f|_E$ we obtain a monotone map $g \in C(\mathbb{S})$. By [KS, Theorem D], $h_T(g) = 0$. By Lemma 4(i), $h_T(f|_E) \leq h_T(g)$. Hence, $\limsup_{n\to\infty} \frac{1}{n} \log \operatorname{Span}(T, f|_E, \varepsilon, n) = 0$ for any $\varepsilon > 0$.

Now fix an arbitrary $\varepsilon > 0$. We are going to estimate $\operatorname{Span}(T, f, \varepsilon, n)$. Let I_1, \ldots, I_k be all contiguous intervals longer than $\frac{\varepsilon}{2}$. Let A be a $(T, f|_E, \frac{\varepsilon}{2}, n)$ -span. Take any point x whose (T, f, n)-trajectory lies in $\mathbb{S} \setminus \bigcup_{i=1}^k I_i$. If $x \in E$ then x is (T, f, ε, n) -spanned by A. For $x \notin E$ put y to be an endpoint of the contiguous interval which contains x. Then $\|f^{t_i}x, f^{t_i}y\| \leq \frac{\varepsilon}{2}$ for all $1 \leq i \leq n$. Since $y \in E$ is $(T, f, \frac{\varepsilon}{2}, n)$ -spanned by a point $z \in A$, the set A obviously (T, f, ε, n) -spans all such points x.

So it remains to consider those points whose (T, f, n)-trajectories meet $\bigcup_{i=1}^{k} I_i$. Fix $N \in \mathbb{N}$ such that $N > \frac{1}{\varepsilon}$. We are going to show that there is a set of cardinality at most $n \cdot k \cdot N^k$ which (T, f, ε, n) -spans all considered points. It is sufficient to show that there is a set with cardinality at most N^k which (T, f, ε, n) -spans the set $I(t_i, I_j) = \{x \in \mathbb{S}; f^{t_i}x \in I_j\}$ (for fixed $1 \leq i \leq n$ and $1 \leq j \leq k$). First, it is obvious that $I(t_i, I_j)$ is a contiguous interval. Consider its (T, f, n)-trajectory $(f^{t_1}I(t_i, I_j), \ldots, f^{t_n}I(t_i, I_j))$. Each element in this trajectory is either a contiguous interval or a point from E. At most k of them have lengths greater than or equal to ε — cut each of such elements to N segments shorter than ε . All the other elements of the trajectory will be considered to be segments themselves. To each $x \in I(t_i, I_j)$ assign its code — the sequence $(S_1(x), \ldots, S_n(x))$ where $S_l(x)$ is the segment containing $f^{t_l}x$. We have at most N^k different codes and all points with the same code can be (T, f, ε, n) -spanned by one point.

From what has been said above we see that $\operatorname{Span}(T, f, \varepsilon, n) \leq \operatorname{Span}(T, f|_E, \frac{\varepsilon}{2}, n) + n \cdot k \cdot N^k$ which finishes the proof of Theorem 1 for maps without periodic points.

Maps with periodic points

We will first deal with the case C_2 . We know that for any $n \in \mathbb{N}$ f is chaotic if and only if f^n is chaotic. Taking into account Corollary 6 we can without loss of generality assume that $P(f) = \{1\}$ or $P(f) = \{1, 2, 2^2, \ldots\}$. Since f has a fixed point, by [Ku, Lemma 2.5] there is a lifting F and an F-invariant compact interval J longer than 1. In the following discussion of the case C_2 we will write Fand Π instead of $F|_J$ and $\Pi|_J$, respectively, as in the next commutative diagram

Note that if $x, y \in J$ then $||\Pi x, \Pi y|| \le |x - y|$ with the equality whenever $|x - y| \le \frac{1}{2}$.

Lemma 7. F is chaotic if and only if f is chaotic.

PROOF: Let F be chaotic. Then there are two points $u, v \in J$ such that

(1)
$$\limsup_{i \to \infty} |F^i u - F^i v| = \gamma > 0;$$

(2)
$$\liminf_{i \to \infty} |F^i u - F^i v| = 0.$$

We claim that $\Pi u, \Pi v$ form a scrambled set for f. From (2),

$$\begin{split} &\lim \inf_{i\to\infty} \|f^i\Pi u, f^i\Pi v\| = 0. \text{ Now put } \eta = \min\{\gamma, \frac{1}{2}\}. \text{ Take } 0 < \delta < \eta \text{ such that } |x-y| < \delta \text{ implies } |Fx-Fy| < \eta. \text{ From this and (1) and (2) we have that } |F^iu - F^iv| \in [\delta, \eta] \text{ infinitely many times. Since } \eta \leq \frac{1}{2}, \text{ the same holds for } \|f^i\Pi u, f^i\Pi v\|. \text{ Thus } \limsup_{i\to\infty} \|f^i\Pi u, f^i\Pi v\| \geq \delta > 0. \end{split}$$

Let F be nonchaotic. Then by [JS, Theorem 3] every trajectory of F is approximable by cycles, i.e. for any $\varepsilon > 0$ and any $x \in J$ there is some periodic point $p \in Per(F)$ such that

(3)
$$|F^i x - F^i p| < \varepsilon \quad \text{for all} \quad i = 0, 1, 2, \dots$$

Fix any $z \in \mathbb{S}$. Take any of its preimages $x \in \Pi^{-1}z$. Let $\varepsilon > 0$ be arbitrary, $p \in \operatorname{Per}(F)$ such that (3) is satisfied. Clearly, Πp is a periodic point for f and $\|f^i z, f^i \Pi p\| < \varepsilon$ for all $i = 0, 1, 2, \ldots$ Thus f is not chaotic by [Ku, Theorem A].

Lemma 8. Let F be chaotic. Then there is an increasing sequence T such that $h_T(f) > 0$.

PROOF: If F has a periodic point of period $k \cdot 2^m$ where k > 1 is odd then, by Sharkovsky theorem, it has also a periodic point of period $k' \cdot 2^m$ where k' >diam J + 1 is odd. Since $\Pi | J$ is at most [diam J] + 1 to one, f has a periodic point of period $k'' \cdot 2^{m'}$ where k'' > 1 is odd. This is a contradiction since P(f)is $\{1\}$ or $\{1, 2, 2^2, \ldots\}$. So F is of type 2^∞ , chaotic. By [S] there is an orbit of periodic intervals of period p > diam J such that F^p is chaotic on each of them. At least one interval K in this orbit is shorter than 1. Then $\Pi |_K$ is injective and so $F^p |_K$ is topologically conjugate with $f^p |_{\Pi K}$. By [FS, Theorem] there is an increasing sequence of nonnegative integers S such that $h_S(F^p |_K) > 0$. Since $h_{p \cdot S}(f) = h_S(f^p)$ it is sufficient to use Lemma 4(iii) and (i) to get $h_{p \cdot S}(f) \ge$ $h_S(f^p |_{\pi} K) = h_S(F^p |_K) > 0$.

We are going to show that Theorem 1 holds for maps from the class C_2 . Let $f \in C_2$ be chaotic. Then we obtain the required result using Lemma 7 and Lemma 8.

Now let $f \in C_2$ and let there be an increasing sequence of nonnegative integers T such that $h_T(f) > 0$. Theorem 4(ii) then implies that $h_T(F) > 0$ where F has the same meaning as above. By [FS, Theorem] F is chaotic. Lemma 7 finishes the proof.

Finally we will discuss the situation for maps from the remaining class C_3 . So let $P(f^n) = \mathbb{N}$ for some n. By [BC, Theorem IX.28(i) and (ii)] we have that $h(f^n)$ is positive and so is h(f). By the same theorem, conditions (ii) and (iii), we have that $f^{m \cdot n}$ is strictly turbulent for a suitable $m \in \mathbb{N}$ which implies that f is chaotic for the same reason as in the interval case. This finishes the proof of Theorem 1.

Proof of Theorem 2

The space X contains a homeomorphic image J of the interval [0,1]. The set J is a retract of X by [HY, Theorem 2-34]. Let $r: X \to J$ be a corresponding retraction. By [H, Theorem 6] there is a chaotic onto map $g \in C([0,1])$ such that $h_T(g) = 0$. Let $\tilde{g} \in C(J)$ be a map topologically conjugate with g. Define $f \in C(X)$ by $f = \tilde{g} \circ r$. Since $\bigcap_{i=0}^{\infty} f^i X = f X = J$, we have that $h_T(f) = h_T(f|_J) = 0$ by [BCJ, Proposition 1].

Acknowledgment. The author thanks Professor L'ubomír Snoha for contributing ideas useful for this paper and for his helpful comments during the last stage of its preparation.

References

- [ALM] Alsedà L., Llibre J., Misiurewicz M., Combinatorial Dynamics and Entropy in Dimension One, World Scientific Publ., Singapore, 1993.
- [AK] Auslander J., Katznelson Y., Continuous maps of the circle without periodic points, Israel. J. Math. 32 (1979), 375–381.
- [BCJ] Balibrea F., Cánovas J.S., Jiménez López V., Commutativity and noncommutativity of topological sequence entropy, preprint.
- [BC] Block L.S., Coppel W.A., Dynamics in One Dimension, Lecture Notes in Math., vol. 1513, Springer, Berlin, 1992.
- [FS] Franzová N., Smítal J., Positive sequence entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991), 1083–1086.
- [G] Goodman T.N.T., Topological sequence entropy, Proc. London Math. Soc. 29 (1974), 331–350.
- [HY] Hocking J.G., Young G.S., Topology, Dover, New York, 1988.
- [H] Hric R., Topological sequence entropy for maps of the interval, Proc. Amer. Math. Soc. 127 (1999), 2045–2052.
- [JS] Janková K., Smítal J., A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), 283–292.
- [KS] Kolyada S., Snoha E., Topological entropy of nonautonomous dynamical systems, Random and Comp. Dynamics 4 (1996), 205–233.
- [Ku] Kuchta M., Characterization of chaos for continuous maps of the circle, Comment. Math. Univ. Carolinae 31 (1990), 383–390.
- [KuS] Kuchta M., Smítal J., Two point scrambled set implies chaos, European Conference on Iteration Theory ECIT'87, World Sci. Publishing Co., Singapore.
- [L] Lemańczyk M., The sequence entropy for Morse shifts and some counterexamples, Studia Math. 52 (1985), 221–241.
- [LY] Li T Y., Yorke J.A., Period three implies chaos, Amer. Math. Monthly 82 (1975), 985– 992.
- [S] Smítal J., Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269–281.

DEPARTMENT OF MATHEMATICS, FACULTY OF NATURAL SCIENCES, MATEJ BEL UNIVERSITY, TAJOVSKÉHO 40, SK-974 01 BANSKÁ BYSTRICA, SLOVAK REPUBLIC

E-mail: hric@fpv.umb.sk

(Received March 31, 1999)