Generalized *n*-coherence

J. Jirásko

Abstract. In this paper necessary and sufficient conditions for large subdirect products of *n*-flat modules from the category Gen(Q) to be *n*-flat are given.

 $Keywords\colon$ relative finiteness conditions, relative coherence, large subdirect products of $n\text{-}\mathrm{flat}$ modules

Classification: 16D40

In what follows, R stands for an associative ring with a unit element and R-Mod (Mod-R) denotes the category of all unitary left (right) R-modules.

Let \mathcal{F} be a filter on a set I and $\{M_i; i \in I\}$ be a family of left R-modules. We define an equivalence relation \sim on $\prod_{i \in I} M_i$ as follows: For $(m_i), (n_i) \in \prod_{i \in I} M_i, (m_i) \sim (n_i)$ if $\{i \in I; m_i = n_i\} \in \mathcal{F}$. The equivalence class of $(0, 0, \ldots)$ is called the \mathcal{F} -product and it is denoted by $\prod_{i \in I}^{\mathcal{F}} M_i$. Clearly, $\prod_{i \in I}^{\mathcal{F}} M_i$ is a submodule of $\prod_{i \in I} M_i$. For a set X let |X| denotes the cardinality of X and for $m = (m_i)_{i \in I} \in I, M_i$ let $supp(m) = \{i \in I; m_i \neq 0\}$. For an infinite cardinal number \aleph the \aleph -product is defined as $\prod_{i \in I}^{\aleph} M_i = \{m \in \prod_{i \in I} M_i; |supp(m)| < \aleph\}$. For an infinite cardinal number \aleph let \aleph^+ be its immediate successor. Let \mathcal{F} be a filter on an index set I and let \aleph be $\sup\{|I \smallsetminus X|; X \in \mathcal{F}\}$. According to [9] we define $\sup(\mathcal{F})$ to be \aleph if the supremum is not attained and \aleph^+ if the supremum is attained. If \aleph is an infinite cardinal number and $|I| \geq \aleph$ then $\mathcal{F} = \{X \subseteq I; |I \smallsetminus X| < \aleph\}$ is a filter on I with $\sup(\mathcal{F}) = \aleph$ and $\prod_{i \in I}^{\aleph} M_i = \prod_{i \in I}^{\mathcal{F}} M_i \subseteq \prod_{i \in I}^{\aleph_1} M_i$ denotes the new have $\sum_{i \in I}^{\oplus} M_i \subseteq \prod_{i \in I}^{\aleph_1} M_i = \prod_{i \in I} M_i$. The \mathcal{F} -products (\aleph -products) of flat and projective modules were investigated in [9] and [10] by P. Loustaunau.

Let n be a nonnegative integer. A module $M \in Mod-R$ is called n-presented if there is a finite n-presentation of M i.e. an exact sequence

$$F_n \to F_{n-1} \to \ldots \to F_1 \to F_0 \to M \to 0$$

in which every F_i is free of finite rank. A ring R is said to be right n-coherent if every n-presented right module is (n + 1)-presented. The following definition of n-flat and n-FP-injective module is due to J. Chen and N. Ding. Let n be

The author has been supported by GA CR 201/97/1162.

J. Jirásko

a positive integer. A left R-module Q is called n-flat if $\operatorname{Tor}_n^R(N,Q) = 0$ for all *n*-presented right *R*-modules *N*. A right *R*-module *M* is said to be n-*FP*-injective if $\operatorname{Ext}_{R}^{n}(N, M) = 0$ for all *n*-presented right *R*-modules *N*.

In [3] J. Chen and N. Ding characterize right n-coherent rings as rings for which direct products of n-flat left R-modules are n-flat. In [5] (\aleph, Q) -coherent rings were introduced and they were characterized as rings for which N-products of flat modules from the category Gen(Q) are flat. These rings were also studied in [11]. The aim of this paper is to generalize results of J. Chen and N. Ding and the results in [5] to \aleph -products of n-flat modules from the category Gen(Q) for a fixed flat module Q.

Throughout all the paper $_{R}Q$ denotes a fixed flat left R-module and \aleph denotes an infinite cardinal number.

The notions of (\aleph, Q) -finitely generated, (\aleph, Q) -finitely presented and (\aleph, Q) coherent modules were introduced in [5]. In the following lemmas we summarize basic properties of these modules.

Lemma 1.1. Let $\{Q_i; i \in I\}$ be a set of left *R*-modules. Then

- (i) if \mathcal{F} is a filter on I with $\sup(\mathcal{F}) \leq \aleph$ then $\prod_{i \in I}^{\mathcal{F}} Q_i \subseteq \prod_{i \in I}^{\aleph} Q_i$; (ii) let \mathcal{F} be a filter on I with $\sup(\mathcal{F}) = \aleph$ and $q \in \prod_{i \in I}^{\aleph} Q_i$. If S = supp(q)then there is $X \in \mathcal{F}$ and an injective map $f: S \to I \setminus X$. Since $X \subseteq I \setminus f(S)$ the element \overline{q} defined by $\overline{q}_i = q_{f^{-1}(i)}$ for $i \in f(S)$ and $\overline{q}_i = 0$ for $i \in I \setminus f(S)$ belongs to $\prod_{i \in I}^{\mathcal{F}} Q_i$.

PROOF: (i). If $q \in \prod_{i \in I}^{\mathcal{F}} Q_i$ then $|supp(q)| < sup(\mathcal{F}) \leq \aleph$ and consequently $q \in \prod_{i \in I}^{\aleph} Q_i.$

(ii). If $\sup(\mathcal{F}) = \aleph$ and $|S| < \aleph$ then there is $X \in \mathcal{F}$ with $|S| \leq |I \setminus X|$. The rest is clear.

Lemma 1.2. Let \mathcal{F} be a filter on I with $\sup(\mathcal{F}) = \aleph, \{Q_i; i \in I\}$ be a family of left R-modules and M be a right R-module. Then the following conditions are equivalent:

- (i) the natural homomorphism $\varphi_{\mathcal{F}} \colon M \otimes_R \prod_{i \in I}^{\mathcal{F}} Q_i \to \prod_{i \in I}^{\mathcal{F}} (M \otimes_R Q_i)$ defined via $\varphi_{\mathcal{F}}(m \otimes (q_i)_{i \in I}) = (m \otimes q_i)_{i \in I}$ is an epimorphism;
- (ii) the natural homomorphism $\varphi_{\aleph} \colon M \otimes_R \prod_{i \in I}^{\aleph} Q_i \to \prod_{i \in I}^{\aleph} (M \otimes_R Q_i)$ defined via $\varphi_{\aleph}(m \otimes (q_i)_{i \in I}) = (m \otimes q_i)_{i \in I}$ is an epimorphism.

PROOF: (i) implies (ii). Let $\varphi_{\mathcal{F}}$ be an epimorphism, $q \in \prod_{i \in I}^{\aleph} (M \otimes Q_i), S =$ supp(q) and $\overline{q} \in \prod_{i \in I}^{\mathcal{F}} (M \otimes Q_i)$ be the element defined in Lemma 1.1(ii). Then there is an element $m_1 \otimes q_1 + \cdots + m_r \otimes q_r \in M \otimes \prod_{i \in I}^{\mathcal{F}} Q_i$ with $(m_1 \otimes q_{1i} + \cdots + m_r \otimes q_i)$ $q_{r_i}_{i \in I} = \overline{q}$. We can assume without loss of generality that $q_{ij} = 0$ for $j \in I \setminus f(S)$ and $i = 1, \ldots, r$. Let $p_j \in \prod_{i \in I}^{\aleph} Q_i$ such that $p_{j_t} = 0$ for $t \in I \setminus S$ and $p_{j_s} = q_{j_{f(s)}}$ for $s \in S$, $j = 1, \ldots, r$. Hence $q_s = \overline{q}_{f(s)} = m_1 \otimes q_{1f(s)} + \cdots + m_r \otimes q_{rf(s)} =$ $m_1 \otimes p_{1s} + \cdots + m_r \otimes p_{rs}$ for $s \in S$ and consequently φ_{\aleph} is an epimorphism.

(ii) implies (i). If φ_{\aleph} is an epimorphism and $q \in \prod_{i \in I}^{\mathcal{F}} (M \otimes Q_i)$ then there is an element $m_1 \otimes q_1 + \cdots + m_r \otimes q_r \in M \otimes \prod_{i \in I}^{\aleph} Q_i$ with $(m_1 \otimes q_{1i} + \ldots m_r \otimes q_{ri})_{i \in I} = q$. If S = supp(q) then $I \setminus S \in \mathcal{F}$. Without loss of generality we can take q_i such that $q_{ij} = 0$ for $j \in I \setminus S$ and $i = 1, \ldots, r$. Thus $q_i \in \prod_{i \in I}^{\mathcal{F}} Q_i$ for $i = 1, \ldots, r$ and consequently $\varphi_{\mathcal{F}}$ is an epimorphism.

The following definition is motivated by the definition of R.R. Colby and E.A. Rutter of the Q-finitely generated module in [4] and the definition of P. Loustaunau of the \aleph -finitely generated module in [9].

Definition 1.3. A right *R*-module *M* is said to be (\aleph, Q) -finitely generated if every subset *T* of $M \otimes_R Q$ with $|T| < \aleph$ is contained in $N \otimes_R Q$ for some finitely generated submodule *N* of a module *M*.

Lemma 1.4. Let M be a right R-module. Then the following conditions are equivalent:

- (i) M is (\aleph, Q) -finitely generated;
- (ii) if I is a set and $Q_i \in Gen(Q)$, $i \in I$ then the natural homomorphism $\varphi \colon M \otimes_R \prod_{i \in I}^{\aleph} Q_i \to \prod_{i \in I}^{\aleph} (M \otimes_R Q_i)$ defined via $\varphi(m \otimes (q_i)_{i \in I}) = (m \otimes q_i)_{i \in I}$ is an epimorphism;
- (iii) if I is a set then the natural homomorphism $\varphi \colon M \otimes_R \prod_{i \in I}^{\aleph} Q \to \prod_{i \in I}^{\aleph} (M \otimes_R Q)$ defined via $\varphi(m \otimes (q_i)_{i \in I}) = (m \otimes q_i)_{i \in I}$ is an epimorphism.

PROOF: (i) implies (ii). Let $u \in \prod_{i \in I}^{\aleph} (M \otimes Q_i)$, T = supp(u) and $f_i \colon Q^{(J_i)} \to Q_i$, $i \in I$ be epimorphisms. Then $|T| < \aleph$ and $id_M \otimes f_i \colon M \otimes Q^{(J_i)} \to M \otimes Q_i$, $i \in I$ are epimorphisms. Hence $u_i = \sum_{j=1}^{n_i} m_{ij} \otimes f_i(q_{ij})$, where $m_{ij} \in M$, $q_{ij} \in Q^{(J_i)}$, $i \in I$ and $j = 1, \ldots, n_i$. Now $q_{ij} = \sum_{k=1}^{t_{ij}} q_{ijk}$, where $q_{ijk} \in Q$, $k = 1, \ldots, t_{ij}$. Let $S = \{m_{ij} \otimes q_{ijk}; i \in T, j = 1, \ldots, n_i, k = 1, \ldots, t_{ij}\}$. Then $|S| < \aleph$ and $S \subseteq M \otimes Q$. Thus $S \subseteq N \otimes Q$ for some finitely generated submodule $N = \sum_{p=1}^{l} n_p R$ of M. Hence $m_{ij} \otimes q_{ijk} = \sum_{p=1}^{l} n_p \otimes q_{ijkp}$ for some $q_{ijkp} \in Q$. Put $v_{ip} = \sum_{j=1}^{n_i} \sum_{k=1}^{t_{ij}} q_{ijkp}$ for $i \in T$ and $v_{ip} = 0$ for $i \in I \setminus T$, $p = 1, \ldots, l$. Then $w_p = (f_i(v_{ip}))_{i \in I} \in \prod_{i \in I}^{\aleph} Q_i$, $p = 1, \ldots, l$ and $u_i = \sum_{p=1}^{l} n_p \otimes f_i(\sum_{j=1}^{n_i} \sum_{k=1}^{t_{ij}} q_{ijkp}) = \sum_{p=1}^{l} n_p \otimes f_i(v_{ip})$, $i \in I$. Thus $\varphi(\sum_{p=1}^{l} n_p \otimes w_p) = (\sum_{p=1}^{l} n_p \otimes f_i(v_{ip}))_{i \in I} = u$ and consequently φ is an epimorphism. (ii) implies (iii). Obvious.

(iii) implies (i). Let $S \subseteq M \otimes Q$ with $|S| < \aleph$ and I be a set such that $|S| \leq |I|$ (e.g. $I = M \otimes Q$ or I is a set with $|I| \geq \aleph$). Then there is an injective map $f: S \to I$. Let us consider $u \in \prod_{i \in I}^{\aleph} (M \otimes Q)$ defined by $u_i = f^{-1}(i)$ for $i \in f(S)$ and $u_i = 0$ for $i \in I \setminus f(S)$. Then by assumption there is $\sum_{j=1}^r m_j \otimes q_j \in M \otimes \prod_{i \in I}^{\aleph} Q$ such that $(\sum_{j=1}^r m_j \otimes q_{j_i})_{i \in I} = u$. Now if $s \in S$ then $s = f^{-1}(i) = \sum_{j=1}^r m_j \otimes q_{j_i}$ for some $i \in f(S)$ and therefore $S \subseteq N \otimes Q$, where $N = \sum_{j=1}^r m_j R$ is a finitely generated submodule of M.

Corollary 1.5. The class of all (\aleph, Q) -finitely generated modules is closed under extensions, homomorphic images, finite direct sums, direct summands and contains the class of all finitely generated modules.

PROOF: It follows immediately from Lemma 1.4(ii) and the definition of (\aleph, Q) -finitely generated module.

Definition 1.6. A right *R*-module *M* is said to be (\aleph, Q) -finitely presented if there is a short exact sequence $0 \to K \to F \to M \to 0$ with *F* free of finite rank and *K* (\aleph, Q) -finitely generated.

Lemma 1.7. Let M be a finitely generated right R-module. Then the following conditions are equivalent:

- (i) M is (\aleph, Q) -finitely presented;
- (ii) if $0 \to K \to P \to M \to 0$ is a projective presentation with P finitely generated then K is (\aleph, Q) -finitely generated;
- (iii) if I is a set and $Q_i \in Gen(Q)$, $i \in I$ then the natural homomorphism $\varphi \colon M \otimes_R \prod_{i \in I}^{\aleph} Q_i \to \prod_{i \in I}^{\aleph} (M \otimes_R Q_i)$ defined via $\varphi(m \otimes (q_i)_{i \in I}) = (m \otimes q_i)_{i \in I}$ is an isomorphism;
- (iv) if I is a set then the natural homomorphism $\varphi \colon M \otimes_R \prod_{i \in I}^{\aleph} Q \to$

 $\prod_{i\in I}^{\aleph}(M\otimes_R Q) \text{ defined via } \varphi(m\otimes(q_i)_{i\in I}) = (m\otimes q_i)_{i\in I} \text{ is an isomorphism.}$ PROOF: (i) implies (ii). Let $0 \to K_i \to P_i \to M \to 0, i = 1, 2$ be two projective presentations of M. By Schanuel's Lemma we have $P_1 \oplus K_2 \simeq P_2 \oplus K_1$. Now if P_1, P_2 are finitely generated and K_1 is (\aleph, Q) -finitely generated then K_2 is (\aleph, Q) -finitely generated by Corollary 1.5.

(ii) implies (iii). Let $0 \to K \to F \to M \to 0$ be an exact sequence, where F is free of finite rank and $Q_i \in Gen(Q), i \in I$. Consider the following commutative diagram

Then φ_F is obviously an isomorphism since F is free of finite rank and φ_K is an epimorphism since K is (\aleph, Q) -finitely generated. Hence φ_M is an isomorphism. (iii) implies (iv). Obvious.

(iv) implies (i). Let $0 \to K \to F \to M \to 0$ be an exact sequence with F free of finite rank. Consider the following commutative diagram

Now φ_F and φ_M are isomorphisms. Hence φ_K is an epimorphism and K is (\aleph, Q) -finitely generated by Lemma 1.4.

Remark 1.8. As it follows from Lemma 1.2 and the proof of Lemma 1.7 every \aleph -product $\prod_{i \in I}^{\aleph}$ in Lemma 1.4 and Lemma 1.7 can be replaced by \mathcal{F} -product $\prod_{i \in I}^{\mathcal{F}}$ for a filter \mathcal{F} on I with $\sup(\mathcal{F}) = \aleph$.

Definition 1.9. Let n be a nonnegative integer. A right R-module M is called n- (\aleph, Q) -presented if there is a finite n- (\aleph, Q) -presentation of M i.e. an exact sequence

$$0 \to K_n \to F_{n-1} \to \ldots \to F_1 \to F_0 \to M \to 0$$

in which every F_i is free of finite rank and K_n is (\aleph, Q) -finitely generated.

Definition 1.10. Let n be a nonnegative integer. A ring R is said to be right $n-(\aleph, Q)$ -coherent if every n-presented right R-module is $(n+1)-(\aleph, Q)$ -presented.

Lemma 1.11. Let n be a positive integer, N be an $n-(\aleph, Q)$ -presented right R-module and $\{Q_i; i \in I\}$ be a family of left R-modules from Gen(Q). Then:

- (i) there is an epimorphism $\operatorname{Tor}_{\underline{n}}^{R}(N, \prod_{i \in I}^{\aleph} Q_{i}) \to \prod_{i \in I}^{\aleph} \operatorname{Tor}_{\underline{n}}^{R}(N, Q_{i});$
- (ii) there is an isomorphism $\operatorname{Tor}_{n-1}^R(N, \prod_{i \in I}^{\aleph} Q_i) \cong \prod_{i \in I}^{\aleph} \operatorname{Tor}_{n-1}^R(N, Q_i).$

PROOF: Let

 $0 \to K_n \to F_{n-1} \to \ldots \to F_1 \to F_0 \to N \to 0$

be the finite n-(\aleph , Q)-presentation of N and $K_i = Ker(F_{i-1} \to F_{i-2})$ for $i = 2, \ldots, n$. Then the short exact sequence $0 \to K_i \to F_{i-1} \to K_{i-1} \to 0$ induces the commutative diagram

Then f_{n-1} is an epimorphism since K_n is (\aleph, Q) -finitely generated and f_{n-2} is an isomorphism since K_{n-1} is (\aleph, Q) -finitely presented, K_i being finitely presented for i < n-1. Now our lemma follows from the fact that $\operatorname{Tor}_{n-1}^R(N, -) \cong$ $\operatorname{Tor}_1^R(K_{n-2}, -)$ and $\operatorname{Tor}_n^R(N, -) \cong \operatorname{Tor}_1^R(K_{n-1}, -)$.

Theorem 1.12. Let n be a nonnegative integer. Then the following conditions are equivalent:

- (i) $\prod_{i \in I}^{\aleph} Q$ is *n*-flat for every index set *I*;
- (ii) $\prod_{i\in I}^{\aleph} Q_i$ is *n*-flat for every index set *I* and any family of *n*-flat modules $Q_i \in Gen(Q)$;

(iii) R is right n-(\aleph , Q)-coherent. (iv)

$$\operatorname{Tor}_{n}^{R}(N,\prod_{i\in I}^{\aleph}Q_{i})\cong\prod_{i\in I}^{\aleph}\operatorname{Tor}_{n}^{R}(N,Q_{i})$$

for every *n*-presented right *R*-module *N* and any family of left *R*-modules $Q_i \in Gen(Q)$.

PROOF: (ii) implies (i). Obvious.

(i) implies (iii). Suppose that N is an n-presented right R-module,

$$F_n \to F_{n-1} \to \ldots \to F_1 \to F_0 \to N \to 0$$

is a finite *n*-presentation of N and $K_i = Ker(F_{i-1} \to F_{i-2})$ for i = 2, ..., n. Then the exact sequence $0 \to K_n \to F_{n-1} \to K_{n-1} \to 0$ induces the following commutative diagram

Then $\operatorname{Tor}_{1}^{R}(K_{n-1},\prod_{i\in I}^{\aleph}Q) \cong \operatorname{Tor}_{n}^{R}(N,\prod_{i\in I}^{\aleph}Q) = 0$ by assumption and the upper row is exact. The lower row is exact since Q is flat. Now $\varphi_{F_{n-1}}, \varphi_{K_{n-1}}$ are isomorphisms and consequently $\varphi_{K_{n}}$ is an isomorphism. Thus K_{n} is (\aleph, Q) -finitely presented by Lemma 1.7. Hence N is (n+1)- (\aleph, Q) -presented.

(iii) implies (iv). It follows immediately from Lemma 1.11(ii).

(iv) implies (ii). Obvious.

References

- Bican L., Kepka T., Němec P., Rings, Modules and Preradicals, Marcel Dekker Inc., New York and Basel, 1982.
- [2] Chase S.U., Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473.
- [3] Jianlong Chen, Nanqing Ding, On n-coherent rings, Comm. Algebra 24 (10) (1996), 3211– 3216.
- [4] Colby R.R., Rutter E.A., Jr., ∏-flat and ∏-projective modules, Arch. Math. 22 (1971), 246-251.
- [5] Jirásko J., Large subdirect products of relative flat modules, Conf. Abelian Groups and Modules, Padova, 1994.
- [6] Jirásková H., Generalized flatness and coherence, Comment. Math. Univ. Carolinae 21 (1980), 293–308.
- [7] Jones M.F., Coherence relative to a hereditary torsion theory, Comm. Algebra 10 (1982), 719–739.
- [8] Lenzig H., Endlich präsentierbare Moduln, Arch. Math. 20 (1969), 262–266.

- [9] Loustaunau P., F-products of injective, flat and projective modules, Comm. Algebra 18 (1990), 3671–3683.
- [10] Loustaunau P., Large subdirect products of projective modules, Comm. Algebra 17 (1989), 197–215.
- [11] Oyonarte L., Torrecillas B., Large subdirect products of flat modules, Comm. Algebra 24 (4) (1996), 1389–1407.
- [12] Oyonarte L., Torrecillas B., Large subdirect products of graded modules, Comm. Algebra 27 (2) (1999), 681–701.

DEPARTMENT OF MATHEMATICS, FACULTY OF CIVIL ENGINEERING, CZECH TECHNICAL UNI-VERSITY, THÁKUROVA 7, 166 29 PRAHA 6, CZECH REPUBLIC

(Received March 26, 1999)