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Characterizations of spreading models of l
1

P. Kiriakouli

Abstract. Rosenthal in [11] proved that if (fk) is a uniformly bounded sequence of real-
valued functions which has no pointwise converging subsequence then (fk) has a subse-
quence which is equivalent to the unit basis of l1 in the supremum norm.
Kechris and Louveau in [6] classified the pointwise convergent sequences of continuous

real-valued functions, which are defined on a compact metric space, by the aid of a
countable ordinal index “γ”. In this paper we prove some local analogues of the above
Rosenthal ’s theorem (spreading models of l1) for a uniformly bounded and pointwise
convergent sequence (fk) of continuous real-valued functions on a compact metric space
for which there exists a countable ordinal ξ such that γ((fnk

)) > ωξ for every strictly
increasing sequence (nk) of natural numbers. Also we obtain a characterization of some
subclasses of Baire-1 functions by the aid of spreading models of l1.

Keywords: uniformly bounded sequences of continuous real-valued functions, conver-
gence index, spreading models of l1, Baire-1 functions

Classification: 46B20, 46E99

1. Introduction

By N we mean the set of all natural numbers (i.e., N = {1, 2, . . .}), by ω we
mean the first infinite ordinal (i.e., ω = {0, 1, 2, . . .}) and by ω1 we mean the first
uncountable ordinal. If X is a set then: |X | denotes the cardinal number of X ,
[X ]<ω the set of all finite subsets of X and [X ] the set of all infinite subsets of X .
Let S be the Schreier family (i.e., S = {∅} ∪ {A ⊂ N : A 6= ∅, |A| ≤ minA}).
Alspach and Argyros in [1] defined the generalized Schreier families Fξ, ξ < ω1,
where F0 = {∅} ∪ {{n} : n ∈ N} and F1 = S.
A real-valued function f defined on a set X is bounded if ‖f‖∞ :=

supx∈X |f(x)| < +∞. A sequence (fk) of real-valued functions defined on a
set X is uniformly bounded if supk ‖fk‖∞ < +∞.
Rosenthal in [11] proved that if (fk) is a uniformly bounded sequence of real-

valued functions which has no pointwise converging subsequence then (fk) has a
subsequence which is equivalent to the unit basis of l1 in the supremum norm.
If (fk) is a sequence of real-valued functions and 1 ≤ ξ < ω1 an ordinal we say

that (fk) is l1ξ -spreading model (or spreading model of l
1 of order ξ) if there are

positive real numbers C and M such that

C
m∑

i=1

|ci| ≤ ‖
m∑

i=1

cifki
‖∞ ≤ M

m∑

i=1

|ci|
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for every F = {k1 < . . . < km} ∈ Fξ and for every real numbers c1, . . . , cm.
Kechris and Louveau in [6] defined the convergence index “γ” of a sequence of

continuous real-valued functions defined on a compact metric space and proved
that γ((fk)) < ω1 iff (fk) is pointwise converging.
This paper is a continuation of the paper [8]. By using some results of [1], [3]

and [8] and using few combinatorial lemmas we prove the following basic results:
If K is a compact metric space, (fk) a uniformly bounded and pointwise con-

verging sequence of continuous real-valued functions on K and 1 ≤ ξ < ω1 then
the following hold: (a) If γ((fnk

)) > ωξ for every strictly increasing sequence (nk)
of natural numbers then there exists a strictly increasing sequence (nk) of natural
numbers such that the sequence (fnk

) is l1ξ -spreading model (cf. Theorem 3.1).

(b) If (nk) is a strictly increasing sequence of natural numbers and (n
′

k) a subse-

quence of (nk) such that the sequence (fn
′

2k+1

− f
n
′

2k

) is l1ξ -spreading model then

γ((fnk
)) > ωξ (cf. Theorem 3.2).

By using (b) we prove that: If the sequence (fk) is l1ξ -spreading model then

γ((fnk
)) > ωξ for every strictly increasing sequence (nk) of natural numbers (cf.

Theorem 3.3). Combining these results and [8] we obtain some criteria (charac-
terizations) for l1ξ -spreading models (cf. Theorem 3.4).

Also Kechris and Louveau in [6] classified the bounded Baire-1 functions, which

are defined on a compact metric space K, to the subclasses Bξ
1(K), ξ < ω1.

Professor S. Negrepontis and the author ([7] or [10; Theorem 3.8]) proved the
following: If K is compact metric space, 1 ≤ ξ < ω1, f a Baire-1 function on K

with f /∈ Bξ
1(K) and (fk) a uniformly bounded sequence of continuous real-valued

functions on K pointwise converging to f , then (fk) has a subsequence which is
l1ξ -spreading model (cf. Theorem 3.5(i)). In this paper we obtain this result as

consequence of Theorem 3.1. Also using Theorem 3.3 we obtain the following
result:
If K is a compact metric space, 1 ≤ ξ < ω1, f a bounded real-valued function

on K and (fk) a uniformly bounded sequence of continuous real-valued functions
defined on K and pointwise converging to f such that for every sequence (gk) of
convex blocks of (fk) (i.e., gk ∈ conv((fp)p≥k) for all k) there exists a subsequence

of (gk) which is l1ξ -spreading model then f /∈ Bξ
1(K) (cf. Theorem 3.5(ii)). (Here

conv((hk)) denotes the set of convex combinations of the hk’s.) For ξ = 1, the
above result has been proved by Haydon, Odell and Rosenthal in [5].
By using the above results we prove the following: (i) If every uniformly

bounded and pointwise converging to zero sequence (fk) of continuous real-valued
functions on a compact metric space K with infk ‖fk‖∞ > 0 has a subsequence
which is l1ξ -spreading model then all bounded and non-continuous Baire-1 func-

tions onK do not belong to Bξ
1(K). (ii) If every uniformly bounded and pointwise

converging to zero sequence of continuous real-valued functions on a compact met-
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ric space K does not have a subsequence which is l1ξ -spreading model, then all

bounded Baire-1 functions on K belong to Bξ
1(K) (cf. Theorem 3.6).

2. Preliminaries

Let K be a compact metric space and C(K) the set of continuous real-valued
functions on K. By R we mean the set of all real numbers. A function f : K → R

is Baire-1 if there exists a sequence (fk) in C(K) that converges pointwise to f .
Let B1(K) be the set of all bounded Baire-1 real-valued functions on K. Haydon,
Odell and Rosenthal in [5], Kechris and Louveau in [6] defined the oscillation index
β(f) of a general function f : K → R and proved that f is Baire-1 iff β(f) < ω1.

Definition 2.1 (cf. [5], [6]). Let K be a compact metric space, f : K → R,

P ⊆ K and ǫ > 0. Let P 0ǫ,f = P and for any ordinal α let Pα+1
ǫ,f

be the set of

those x ∈ Pα
ǫ,f such that for every open set U around x there are two points x1

and x2 in Pα
ǫ,f ∩ U such that |f(x1)− f(x2)| ≥ ǫ.

At a limit ordinal α we set Pα
ǫ,f =

⋂

β<α Pβ
ǫ,f
.

Let β(f, ǫ) be the least α with Kα
ǫ,f = ∅ if such an α exists, and β(f, ǫ) = ω1,

otherwise. Define the oscillation index β(f) of f by

β(f) = sup{β(f, ǫ) : ǫ > 0}.

For every ξ < ω1 we define B
ξ
1(K) = {f ∈ B1(K) : β(f) ≤ ωξ}.

The complexity of pointwise convergent sequences of continuous real-valued
functions defined on a compact metric space is described by a countable ordinal
index “γ” which is defined in the following way.

Definition 2.2 (cf. [6]). Let K be a compact metric space, (fk) a sequence of
continuous real-valued functions defined on K, P ⊆ K and ǫ > 0. Let P 0

ǫ,(fk)
= P

and for any ordinal α let Pα+1
ǫ,(fk)

be the set of those x ∈ Pα
ǫ,(fk)

such that for every

open set U around x and for every p ∈ N there are m, n ∈ N with m > n > p and

a point x
′

in Pα
ǫ,(fk)

∩ U such that |fm(x
′

)− fn(x
′

)| ≥ ǫ.

At a limit ordinal α we set Pα
ǫ,(fk)

=
⋂

β<α Pβ
ǫ,(fk)

. (It can be noticed that

Pα
ǫ,(fk)

is a closed subset of P in the relative topology of P .) Let γ((fk), ǫ) be the

least α withKα
ǫ,(fk)

= ∅ if such an α exists, and γ((fk), ǫ) = ω1, otherwise. (Notice

that if γ((fk), ǫ) < ω1 then it is a successor ordinal.) Define the convergence index
γ((fk)) of (fk) by

γ((fk)) = sup{γ((fk), ǫ) : ǫ > 0}.

Also in [6] it is proved that, γ((fk)) < ω1 iff (fk) is pointwise converging.
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Generalized Schreier families.

Definition 2.3 (cf. [1]). If F and H are finite non-empty subsets of N and
n ∈ N, then we define F < H iff maxF < minH , n ≤ F iff n ≤ minF . Let

F0 = F
′

0 = {{n} : n ∈ N} ∪ {∅} and F1 = F
′

1 be the usual Schreier family, i.e.,

F1 = F
′

1 = {∅}∪{A ⊂ N : A 6= ∅, |A| ≤ minA}. If Fξ, F
′

ξ have been defined then
we set

Fξ+1 =

∞⋃

k=1

{ k⋃

i=1

Fi : F1, . . . , Fk ∈ Fξ with k ≤ F1 < . . . < Fk

}

and

F
′

ξ+1 =

∞⋃

k=1

{ k⋃

i=1

Fi : F1, . . . , Fk ∈ F
′

ξ with k ≤ F1 < . . . < Fk

}

.

If ξ is a limit ordinal with Fζ , F
′

ζ defined for each ζ < ξ, choose and fix a strictly

increasing sequence of ordinals (ξk) and a strictly increasing sequence of successor

ordinals (ξ
′

k) with ξ = sup
k

ξk = sup
k

ξ
′

k and let

Fξ =

∞⋃

k=1

{F ∈ Fξk
: minF ≥ k}, F

′

ξ =

∞⋃

k=1

{F ∈ F
′

ξ
′

k

: minF ≥ k}.

It can be noticed that the families Fm, 1 ≤ m < ω, appeared for the first
time in an example constructed by Alspach and Odell [2]. (Also it is obvious that

Fm = F
′

m for every m < ω.)

Lemma 2.4. (a) For every ζ < ξ < ω1 there exists n ≡ n(ζ, ξ) ∈ N such that

if n ≤ F ∈ Fζ then F ∈ Fξ and, if n ≤ F ∈ F
′

ζ then F ∈ F
′

ξ (see also [3;

Lemma 2.1.8(a)]).
(b) For every ξ < ω1, whenever F = {n1 < . . . < nk} ∈ Fξ (resp. F = {n1 <

. . . < nk} ∈ F
′

ξ) and mi ≥ ni for 1 ≤ i ≤ k then we have {m1, . . . , mk} ∈ Fξ

(resp. {m1, . . . , mk} ∈ F
′

ξ) (see also [3; Lemma 2.1.8(b)]).

(c) If ζ ≤ ξ < ω1 then there exists a strictly increasing sequence (λk) of natural

numbers such that if F ∈ F
′

ζ then {λj : j ∈ F} ∈ Fξ.

(d) If ζ ≤ ξ < ω1 then there exists a strictly increasing sequence (µk) of natural

numbers such that if F ∈ Fζ then {µj : j ∈ F} ∈ F
′

ξ .

Proof: (a) and (b) are proved easily by induction on ξ < ω1. We shall prove
(c) by induction on ξ < ω1. For ξ = 0 it is obvious by Definition 2.3. Suppose
that ξ ≥ 1 and that the conclusion holds for every η < ξ. Assume that ξ = η+1,



Characterizations of spreading models of l1 83

where η < ω1. If ζ ≤ η then there exists a strictly increasing sequence (λk) of

natural numbers such that if F ∈ F
′

ζ then {λj : j ∈ F} ∈ Fη ⊆ Fη+1 = Fξ. Let

ζ = ξ = η + 1. By the induction assumption, there exists a strictly increasing

sequence (λk) of natural numbers such that if F ∈ F
′

η then {λj : j ∈ F} ∈ Fη.

Then we easily see that if F ∈ F
′

ζ = F
′

η+1 then {λj : j ∈ F} ∈ Fη+1 = Fξ.

Assume ξ is a limit ordinal and let (ξk) be the strictly increasing sequence of
ordinals with supk ξk = ξ that defines the family Fξ . If ζ < ξ then there exists

n0 ∈ N with ζ < ξn for all n ≥ n0. We set λn0
k
= k for all k ∈ N. By induction

on n > n0, there exists a subsequence (λ
n
k ) of (λ

n−1
k
) such that if F ∈ F

′

ζ then

{λn
j : j ∈ F} ∈ Fξn

. Consider the sequence (λn0+k
n0+k). By using the assumption and

(b) we have that if F ∈ F
′

ζ and k = minF then F
′

= {λn0+j
n0+j : j ∈ F} ∈ Fξn0+k

and F
′

≥ λn0+k
n0+k ≥ n0 + k. Therefore F

′

∈ Fξ.

Now suppose that ζ = ξ and let (ζ
′

k) be the strictly increasing sequence of

successor ordinals with supk ζ
′

k = ζ that defines the family F
′

ζ . For every n ∈ N

there exists jn ∈ N such that jn ≥ n and ζ
′

n < ξjn
. We set λ0k = k for all

k ∈ N. By induction on n ≥ 1, there exists a subsequence (λn
k ) of (λ

n−1
k
) such

that if F ∈ F
′

ζ
′

n

then {λn
j : j ∈ F} ∈ Fξjn

. The proof can be finished by taking

the sequence (λk
jk
) and using (b) and Definition 2.3. Similarly, we prove the

condition (d). �

Repeated Averages.

S. Argyros, S. Mercourakis and A. Tsarpalias [3] defined a family {(M, ξ) :
M ∈ [N], ξ < ω1} called Repeated Averages Hierarchy. The definition of this
family follows.

Definition 2.5 (cf. [3]). Let S+
l1
be the positive part of the unit sphere of l1. For

A = (ak) in S+
l1
and F = (xk) bounded sequence in a Banach space X we denote

by A · F the usual matrices product, that is:

A · F =
∞∑

k=1

akxk.

For an A = (ak) in S+
l1
we set supp A = {k ∈ N : ak 6= 0}. A sequence (Ak) ⊆

S+
l1
is said to be block sequence if supp Ak < supp Ak+1 for every k = 1, 2, . . . .

For an M ∈ [N] an M -summability method is a block sequence (Ak) with

Ak ∈ S+
l1
and M =

⋃∞
k=1 supp Ak.

For every M ∈ [N] and ξ < ω1, an M -summability method (ξM
k ) is defined

inductively in the following way. (The notation (M, ξ) is also used for the same
method.)
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(i) For ξ = 0, M = (mk) we set ξM
k = emk

, where (ek) is the unit basis of l
1

(i.e., ek = (0, 0, . . . , 1, 0, . . . ), the 1 occurring in the kth place).

(ii) If ξ = ζ + 1, M ∈ [N] and (ζM
k ) has been defined then we define (ξ

M
k )

inductively as follows. We set k1 = 0, s1 = min supp ζM
1 , and

ξM
1 =

ζM
1 + . . .+ ζM

s1

s1
.

Suppose that for j = 1, 2, . . . , n − 1, kj , sj have been defined and

ξM
j =

ζM
kj+1

+ . . .+ ζM
kj+sj

sj
.

Then we set kn = kn−1 + sn−1, sn = min supp ζM
kn
and

ξM
n =

ζM
kn+1

+ . . .+ ζM
kn+sn

sn
.

This completes the definition for successor ordinals.

(iii) If ξ is a limit ordinal and if we suppose that for every ζ < ξ, M ∈ [N] the
sequence (ζM

k ) has been defined, then we define (ξ
M
k ) as follows: We denote by

(ζk) the strictly increasing sequence of successor ordinals with supk ζk = ξ that

defines the family F
′

ξ .

For M = (mj) we define inductively M1 = M , n1 = m1, M2 = {mj : mj /∈

supp[ζn1 ]
M1

1 }, n2 = minM2, M3 = {mj : mj /∈ supp[ζn2 ]
M2

1 } and n3 = minM3,
and so on.
We set ξM

1 = [ζn1 ]
M1

1 , ξM
2 = [ζn2 ]

M2

1 , . . . , ξM
k = [ζnk

]Mk
1 , . . . . Hence (ξM

k ) has
been defined. This completes the definition of Repeated Averages Hierarchy.

Remark 2.6 (cf. [3]). By induction on ξ < ω1 it is easy to show that for every

M ∈ [N] and ξ < ω1 we have {supp ξL
k : L ∈ [M ], k = 1, 2, . . . } ⊆ F

′

ξ .

Notation 2.7 (cf. [3]). For F ∈ [N]<ω and A = (ak) in l1 we denote by 〈A, F 〉
the quantity

∑

k∈F ak.

Definition 2.8. A family F of finite subsets of N is said to be hereditary if F ∈ F
and G ⊆ F implies G ∈ F . A family F ⊆ [N]<ω is said to be compact if the set

of all characteristic functions χF , where F ∈ F , is a compact subspace of {0, 1}N

with the product topology. The family F is said to be adequate if F is hereditary
and compact.

By Proposition 2.3.2 of [3], Theorem 2.2.6 of [3] and Lemma 2.4(d) we have
the following theorem:



Characterizations of spreading models of l1 85

Theorem 2.9. Let ξ < ω1 be an ordinal, F an adequate family of finite subsets
of N, M ∈ [N] and δ a positive real number such that for every N ∈ [M ] and for
every n ∈ N we have that supF∈F 〈ξN

n , F 〉 > δ.
Then there exists a strictly increasing sequence (mk) of members of M such

that {mj : j ∈ E} ∈ F for all E ∈ Fξ .

Trees.

Definition 2.10 (cf. [4]). Let X be a set. For every n ∈ N we set Xn :=
{(x1, . . . , xn) : x1, . . . , xn ∈ X}.

(i) A tree T on X will be a subset of
⋃∞

n=1Xn with the property that
(x1, . . . , xn) ∈ T whenever n ∈ N and (x1, . . . , xn, xn+1) ∈ T .

(ii) Proceeding by induction we associate to each ordinal α a new tree T α as
follows: We set T 0 = T . If T α is obtained, let

T α+1 =

∞⋃

n=1

{(x1, . . . , xn) ∈ T α : (x1, . . . , xn, x) ∈ T α for some x ∈ X}.

If β is a limit ordinal we set T β =
⋂

α<β T α.

Notation 2.11. If T is a tree on a set X and Y ⊆ X then we set:

T|Y := T ∩
∞⋃

n=1

Y n.

In the proofs of the main results (Theorems 3.1, 3.2, 3.3 and 3.4) we shall use
some results from [8] which are contained in the following theorem.

Theorem 2.12. Let K be a compact metric space, 1 ≤ ξ < ω1 and (fk) a
sequence of continuous real-valued functions on K. The following hold:

(i) If γ((fnk
)) > ωξ for every strictly increasing sequence (nk) of natural

numbers then there exist ǫ > 0 and a strictly increasing sequence (nk) of natural

numbers such that for every subsequence (n
′

k) of (nk) and for every E = {k1 <
. . . < kλ} ∈ Fξ , (λ ∈ N), there exists xE ∈ K with |f

n
′

2kj+1

(xE)− f
n
′

2kj

(xE)| > ǫ

for all 1 ≤ j ≤ λ.

(ii) If ǫ > 0, (nk) a strictly increasing sequence of natural numbers and (n
′

k)
a subsequence of (nk) such that for every E = {k1 < . . . < kλ} ∈ Fξ, (λ ∈ N),
there exists xE ∈ K with |f

n
′

2kj+1

(xE) − f
n
′

2kj

(xE)| > ǫ for all 1 ≤ j ≤ λ, then

γ((fnk
), ǫ) > ωξ.

Proof: (i) We start with the next claim.

Claim. There exist a strictly increasing sequence (nk) of natural numbers and

ǫ > 0 such that γ((f
n
′

k

), ǫ) > ωξ for every subsequence (n
′

k) of (nk).
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[Proof of Claim. Assume the contrary. Then for every ǫ > 0 and (nk) strictly

increasing sequence of natural numbers there exists a subsequence (n
′

k) of (nk)

such that γ((f
n
′

k

), ǫ) ≤ ωξ. We set n0k = k for every k ∈ N. By induction on

i ≥ 1, there exists a subsequence (ni
k) of (n

i−1
k
) such that γ((fni

k
), 1i ) ≤ ωξ for

every i ∈ N. Then γ((fnk
k
)) ≤ ωξ , a contradiction.]

Therefore, by Claim and [8; Theorem 3.3 (i) ⇒ (iii)], there are ǫ > 0 and a
strictly increasing sequence (nk) of natural numbers such that for every subse-

quence (n
′

k) of (nk) and for every E = {k1 < . . . , kλ} ∈ Fξ, (λ ∈ N), there is
xE ∈ K with |f

n
′

2kj+1

(xE)− f
n
′

2kj

(xE)| > ǫ for all 1 ≤ j ≤ λ.

(ii) By [8; Lemma 3.1.3, Definition 3.1.1], γ((f
n
′

k

), ǫ) > ωξ and hence γ((fnk
), ǫ)

> ωξ. �

3. Main results

In this section the complexity of pointwise convergent sequences of contin-
uous real-valued functions defined on a compact metric space as described by
the convergence index “γ” produces some local analogues (spreading models) of
Rosenthal’ s theorem (cf. Theorems 3.1, 3.2 and 3.3). By using these results and
[8] we obtain a characterization of l1ξ -spreading models (cf. Theorem 3.4) and a

characterization of those bounded Baire-1 functions which have the oscillation
index greater than ωξ , where 1 ≤ ξ < ω1 (cf. Theorem 3.5). We start with the
following theorem.

Theorem 3.1. Let K be a compact metric space, 1 ≤ ξ < ω1 and (fk) a uni-
formly bounded and pointwise converging sequence of continuous real-valued func-
tions on K such that γ((fnk

)) > ωξ for every strictly increasing sequence (nk) of
natural numbers.
Then there exists a strictly increasing sequence (nk) of natural numbers such

that the sequence (fnk
) is l1ξ -spreading model.

For the proof of this theorem we need Lemmas 3.1.4, 3.1.5, 3.1.7, 3.1.8 which
are proved by using a method, developed by Professor S. Negrepontis and the
author (cf. [7] or [10; Definition 3.6, Lemma 3.7]). We start the next definition.

Definition 3.1.1 (cf. [1]). Let K be a compact metric space and (fk) ⊆ C(K)
pointwise converging on K. Fix ǫ > 0 and let

A+n,m = {x ∈ K : fn(x) − fm(x) > ǫ}, A−
n,m = {x ∈ K : fn(x)− fm(x) < −ǫ}.

For each countable ordinal α we define inductively a subset of K by O0(ǫ, (fk), K)
= K,

Oα+1(ǫ, (fk), K) = {x ∈ Oα(ǫ, (fk), K) : for every neighborhood U of x
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there is n0 ∈ N such that for all n ≥ n0 there exists mn ∈ N such that
⋂

m≥mn

A+n,m ∩Oα(ǫ, (fk), K)∩U 6= ∅ or
⋂

m≥mn

A−
n,m ∩Oα(ǫ, (fk), K) ∩U 6= ∅}.

If β is a limit ordinal, Oβ(ǫ, (fk), K) =
⋂

α<β Oα(ǫ, (fk), K).

Remark 3.1.2. It is easy to show that if (nk) is a strictly increasing sequence of
natural numbers and x ∈ Oα(ǫ, (fnk

), K) for some α < ω1, then for every strictly
increasing sequence (mk) of natural numbers and l ∈ N with mj ∈ {nk : k =
1, 2, . . . } for all j ≥ l we have x ∈ Oα(ǫ, (fmk

), K).

Definition 3.1.3. For n ∈ N and ξ1, . . . , ξn < ω1 we say that the n-tuple
(ξ1, . . . , ξn) has property (A) if whenever K is a compact metric space, (fk) ⊆
C(K) pointwise converging to f , (nk) a strictly increasing sequence of natural

numbers, m ∈ N and ǫ > 0 such that for every subsequence (n
′

k) of (nk) and for
every E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m ≤ E1 < . . . < En there exists x ∈ K such
that |f

n
′

2j+1

(x)− f
n
′

2j

(x)| > ǫ for all j ∈
⋃n

i=1Ei, then there exists a subsequence

(n
′

k) of (nk) such that Oωξn+...+ωξ1 ( ǫ4 , (fn
′

k

), K) 6= ∅.

Lemma 3.1.4. For every ξ < ω1, whenever (ξ1, . . . , ξn) has property (A) then
(ξ, ξ1, . . . , ξn) has property (A).

Proof: We proceed by induction on ξ < ω1.

Case 1. (ξ = 0). Assume that (ξ1, . . . , ξn) have property (A) and we shall show
that (0, ξ1, . . . , ξn) has property (A). Indeed, let K be a compact metric space,
(fk) ⊆ C(K) pointwise converging to f , ǫ > 0, (nk) a strictly increasing sequence

of natural numbers and m ∈ N such that for every subsequence (n
′

k) of (nk) and
k ∈ N, E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m ≤ k < E1 < . . . < En there exists x ∈ K

with |f
n
′

2j+1

(x)−f
n
′

2j

(x)| > ǫ for all j ∈ {k}∪
⋃n

i=1Ei. We shall prove that there

exists a subsequence (n
′

k) of (nk) such that Oωξn+...+ωξ1+1( ǫ4 , (fn
′

k

), K) 6= ∅.

We set P1 := {x ∈ K : |fn2m+1(x) − fn2m(x)| ≥ ǫ}. By the continuity of
fn2m , fn2m+1 , P1 is a closed subset of K and hence it is a compact subspace of K.

Also we set n0k = n2m+k+1 for all k = 1, 2, . . . . Then for every subsequence (n
′

k)

of (n0k) we consider the subsequence (n
”
k) of (nk) with n”k = nk for 1 ≤ k ≤ 2m+1

and n”k = n
′

k for k ≥ 2m+2. By applying the assumption we have that for every
E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m + 1 ≤ E1 < . . . < En there exists x ∈ P1 such
that |f

n
′

2j+1

(x)− f
n
′

2j

(x)| > ǫ for all j ∈
⋃n

i=1Ei. Since (ξ1, . . . , ξn) has property

(A), there exists a subsequence (n1k) of (n
0
k) and x1 ∈ Oωξn+...+ωξ1 ( ǫ4 , (fn1

k
), P1).

Then clearly |fn2m+1(x1)− fn2m(x1)| ≥ ǫ.
By induction on j ≥ 1 and using that (ξ1, . . . , ξn) has property (A), there exists

a strictly increasing sequence (nj+1
k
) of elements of {nj

2m+k+1 : k = 1, 2, . . .} and
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xj+1 ∈ K with xj+1 ∈ Oωξn+...+ωξ1 ( ǫ4 , (fn
j+1
k

), Pj+1), where Pj+1 := {x ∈ K :

|f
n

j
2m+1

(x)− f
n

j
2m

(x)| ≥ ǫ}.

Since K is compact metric space, there exists a subsequence (xλj
) of (xj) and

x ∈ K such that limj→∞ xλj
= x. Then |f

n
λj−1

2m+1

(xλj
) − f

n
λj−1

2m

(xλj
)| ≥ ǫ for

all j = 1, 2, . . . . Then it is easy to choose a subsequence (λµj ) of (λj) and

n
′

j ∈ {n
λµj

−1

2m , n
λµj

−1

2m+1 } for j = 1, 2, . . . , such that one of the following holds:

(1) f
n
′

j

(xλµj
)− f(xλµj

) > ǫ
3 for all j = 1, 2, . . . ,

(2) f
n
′

j

(xλµj
)− f(xλµj

) < − ǫ
3 for all j = 1, 2, . . . .

We shall prove that x ∈ Oωξn+...+ωξ1+1( ǫ4 , (fn
′

k

), K). Indeed, let U be a

neighborhood of x. Since limj→∞ xλµj
= x, there exists j0 ∈ N such that xλµj

∈

U for all j ≥ j0.
Suppose that (1) holds. Since (fk) converges pointwise to f for every j ≥ j0

there exists mj ∈ N such that

f
n
′

j

(xλµj
)− f

n
′

m
(xλµj

) ≥
ǫ

3
>

ǫ

4
for all m ≥ mj .

So, by using Remark 3.1.2, xλµj
∈

⋂

m≥mj
A+j,m ∩ Oωξn+...+ωξ1 ( ǫ4 , (fn

′

k

), K) ∩ U

for all j ≥ j0. Therefore x ∈ Oωξn+...+ωξ1+1( ǫ4 , (fn
′

k

), K). A similar argument

shows that x ∈ Oωξn+...+ωξ1+1( ǫ4 , (fn
′

k

), K) if (2) holds.

Case 2. (ξ ≥ 1). Suppose that the conclusion holds for every ζ < ξ and we
shall show it for ξ. Assume that (ξ1, . . . , ξn) has property (A) and we shall show
that (ξ, ξ1, . . . , ξn) has property (A). Indeed, let K be a compact metric space,
(fk) ⊆ C(K) pointwise converging to f , ǫ > 0, (nk) a strictly increasing sequence

of natural numbers and m ∈ N such that for every subsequence (n
′

k) of (nk) and
E ∈ Fξ, E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m ≤ E < E1 < . . . < En there exists
x ∈ K with |f

n
′

2j+1

(x) − f
n
′

2j

(x)| > ǫ for all j ∈ E ∪
⋃n

i=1Ei. We set nm
k = nk

for all k ∈ N. Consider these two subcases:

(a) ξ = ζ + 1. Then for every subsequence (n
′

k) of (nk), j ∈ N with j ≥ m
and F1, . . . , Fj ∈ Fζ , E1 ∈ Fξ1 , . . . , En ∈ Fξn

with j ≤ F1 < . . . < Fj <
E1 < . . . < En there exists x ∈ K such that |f

n
′

2k+1

(x) − f
n
′

2k

(x)| > ǫ for

all k ∈
⋃j

l=1 Fl

⋃n
i=1Ei. By the induction hypothesis, (ζ, . . . , ζ

︸ ︷︷ ︸

j−times

, ξ1, . . . , ξn) has

property (A) for all j ∈ N. So, by induction on j > m, there exists a subsequence

(nj
k
) of (nj−1

k
) such that Oωξn+...+ωξ1+jωζ

( ǫ4 , (fn
j

k

), K) 6= ∅. We set n
′

k = nm+k
m+k

for all k ∈ N. Therefore, by the compactness of K and using Definition 3.1.1 and

Remark 3.1.2, we get that the set Oωξn+...+ωξ1+ωξ
( ǫ4 , (fn

′

k

), K) is non-empty.
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(b) ξ is a limit ordinal. Let (ζk) be the strictly increasing sequence of ordinals

with supk ζk = ξ that defines the family Fξ . Then for every subsequence (n
′

k) of
(nk), j ∈ N with j ≥ m and E ∈ Fζj

, E1 ∈ Fξ1 , . . . , En ∈ Fξn
with j ≤ E <

E1 < . . . < En there exists x ∈ K such that |f
n
′

2k+1

(x) − f
n
′

2k

(x)| > ǫ for all

k ∈ E ∪
⋃n

i=1Ei. By the induction hypothesis, (ζj , ξ1, . . . , ξn) has property (A)

for every j ∈ N. So, by induction on j > m, there exists a subsequence (n
j
k
) of

(nj−1
k
) such that Oωξn+...+ωξ1+ω

ζj
( ǫ4 , (fn

j
k

), K) is non-empty. We set n
′

k = nm+k
m+k

for all k ∈ N. By the compactness of K and using Definition 3.1.1 and 3.1.2, we

get Oωξn+...+ωξ1+ωξ
( ǫ4 , (fn

′

k

), K) 6= ∅. �

Lemma 3.1.5. For every n ∈ N and ξ1, . . . , ξn < ω1 the n-tuple (ξ1, . . . , ξn) has
property (A).

Proof: By Lemma 3.1.4, it is enough to show that the 1-tuple (ξ) has property
(A) for every ξ < ω1. We shall prove it by induction on ξ < ω1. For ξ = 0, let
K be a compact metric space, (fk) ⊆ C(K) pointwise convergent to f , (nk) a
strictly increasing sequence of natural numbers, m ∈ N and ǫ > 0 such that for

every subsequence (n
′

k) of (nk) and for every E = {k} ∈ F0 there exists x ∈ K
such that |f

n
′

2k+1

(x) − f
n
′

2k

(x)| > ǫ. Then working as in the proof of the case 1

of Lemma 3.1.4 we prove that there exists a subsequence (n
′

k) of (nk) such that

O1( ǫ4 , (fn
′

k

), K) 6= ∅.

Now suppose that ξ ≥ 1, the 1-tuple (ζ) has property (A) for every ζ < ξ and
we shall prove that (ξ) has property (A). If ξ = ζ + 1, then for every k ∈ N,
the k-tuple (ζ, . . . , ζ

︸ ︷︷ ︸

k−times

) has property (A) by Lemma 3.1.4. If ξ is a limit ordinal

and (ξk) the strictly increasing sequence of ordinals with supk ξk = ξ that defines
Fξ then for every k ∈ N, the 1-tuple (ξk) has property (A) by the induction
assumption. Therefore, by using the definition of the property (A) and using a
diagonal argument we get the desired conclusion (as in the case 2 of Lemma 3.1.4).

�

Definition 3.1.6. For any n ∈ N and ξ1, . . . , ξn < ω1 we say that the n-
tuple (ξ1, . . . , ξn) has property (B) if whenever T is a tree on ω such that
0 < m1 < . . . < mk for every (0, m1, . . . , mk) ∈ T and M ∈ [N] such that

(0) ∈ (T|N∪{0})
ωξn+...+ωξ1 for every N ∈ [M ], then there exists a strictly increas-

ing sequence (mk) of elements of M such that for every E1 ∈ Fξ1 , . . . , En ∈ Fξn

with E1 < . . . < En and
⋃n

i=1Ei = {k1 < . . . < kλ}, (where λ ∈ N), we have
(0, mk1 , . . . , mkλ

) ∈ T .

Lemma 3.1.7. For every ξ < ω1, whenever (ξ1, . . . , ξn) has property (B) then
(ξ, ξ1, . . . , ξn) has property (B).

Proof: We proceed by induction on ξ < ω1.



90 P.Kiriakouli

Case 1. (ξ = 0). Let (ξ1, . . . , ξn) have property (B), let T be a tree on ω such
that 0 < m1 < . . . < mk for every (0, m1, . . . , mk) ∈ T and M ∈ [N] such that

(0) ∈ (T|N∪{0})
ωξn+...+ωξ1+1 for every N ∈ [M ].

Claim. There exists M0 ∈ [M ] such that for every M
′

∈ [M0] there is m ∈ M
′

such that (0, m) ∈ (T|L∪{0})
ωξn+...+ωξ1 for all L ∈ [M

′

] with minL > m.

[Proof of Claim. Assume the contrary. Then there exists a decreasing
sequence (Mλ) of infinite subsets of M such that if mλ = minMλ then mλ <

mλ+1 and (0, mλ) /∈ (T|{0,mλ}∪Mλ+1
)ω

ξn+...+ωξ1 for all λ ∈ N. Consider

the set L = {mλ : λ = 1, 2, . . . }. Then from the assumption we have that

(0) ∈ (T|L∪{0})
ωξn+...+ωξ1+1. Hence there exists λ ∈ N such that (0, mλ) ∈

(T|L∪{0})
ωξn+...+ωξ1 . Then (0, mλ) ∈ (T|{0,mλ}∪Mλ+1

)ω
ξn+...+ωξ1 , a contradic-

tion. This completes the proof of the claim.]
For every m ∈ M we define the tree
Tm = {(0)} ∪ {(0, n1, . . . , nj) : j ∈ N, (0, m, n1, . . . , nj) ∈ T }.
By induction on α < ω1, it is easy to show that (0, m, n1, . . . , nj) ∈ (T|N∪{0})

α

iff (0, n1, . . . , nj) ∈ (Tm|N∪{0})
α and (0, m) ∈ (T|N∪{0})

α iff (0) ∈ (Tm|N∪{0})
α

for every N ∈ [M ].
By repeated application of Claim and using that (ξ1, . . . , ξn) has property (B),

we find strictly increasing sequences Mλ = (m
λ
k), λ ∈ N of elements of M and a

strictly increasing sequence (mλ) of elements of M such that for every λ ∈ N it

holds mλ ∈ Mλ, m
λ
λ ≤ mλ < minMλ+1 and for every E1 ∈ Fξ1 , . . . , En ∈ Fξn

with E1 < . . . < En and
⋃n

i=1Ei = {k1 < . . . < kµ}, (where µ ∈ N), we have

(0, mλ+1
k1

, . . . , mλ+1
kµ
) ∈ Tmλ

. The proof can be finished by taking the sequence

(mλ) and using Lemma 2.4(b).

Case 2. (ξ ≥ 1). Assume that the conclusion of our Lemma is true for every
ζ < ξ and we shall show that it is true for ξ. Suppose that (ξ1, . . . , ξn) has
property (B) and we shall show that (ξ, ξ1, . . . , ξn) has property (B). Let T be
a tree on ω such that 0 < m1 < . . . < mk for every (0, m1, . . . , mk) ∈ T and

M ∈ [N] such that (0) ∈ (T|N∪{0})
ωξn+...+ωξ1+ωξ

for all N ∈ [M ]. Consider
these two subcases:

(a) ξ = ζ + 1. Then (0) ∈ (T|N∪{0})
ωξn+...+ωξ1+λωζ

for all N ∈ [M ], λ ∈ N

and by the induction hypothesis, (ζ, . . . , ζ
︸ ︷︷ ︸

λ−times

, ξ1, . . . , ξn) has property (B) for every
λ ∈ N.

(b) ξ is a limit ordinal. Let (ζk) be the strictly increasing sequence of ordinals

with supk ζk = ξ that defines the family Fξ . Then (0) ∈ (T|N∪{0})
ωξn+...+ωξ1+ωζλ

for every N ∈ [M ], λ ∈ N and by the induction assumption, (ζλ, ξ1, . . . , ξn) has
property (B) for every λ ∈ N.

By using the definition of the property (B) and using a diagonal argument we
get the desired conclusion in the two subcases. �
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Lemma 3.1.8. For every n ∈ N, ξ1, . . . , ξn < ω1, the n-tuple (ξ1, . . . , ξn) has
property (B).

Proof: By Lemma 3.1.7, it is enough to show that (ξ) has property (B) for
every ξ < ω1. We shall use induction on ξ. Let ξ = 0, T be a tree on ω such
that 0 < m1 < . . . < mk for every (0, m1, . . . , mk) ∈ T and M ∈ [N] such
that (0) ∈ (T|N∪{0})

1 for every N ∈ [M ]. Then there exist a strictly decreasing
sequence M1 ⊃ M2 ⊃ . . . ⊃ Mk ⊃ . . . of infinite subsets of M and a strictly
increasing sequence (mk) such that mk ∈ Mk and (0, mk) ∈ T for all k ∈ N.
Therefore the sequence (mk) is the desired sequence.
Now let 1 ≤ ξ < ω1 such that (ζ) has property (B) for every ζ < ξ. If ξ = ζ+1

then for every k ∈ N, (ζ, . . . , ζ
︸ ︷︷ ︸

k−times

) has property (B) by Lemma 3.1.7. If ξ is a limit

ordinal and (ζk) is the strictly increasing sequence with supk ζk = ξ that defines
the family Fξ then the 1-tuple (ζk) has property (B) for all k ∈ N.
By using the definition of the property (B) and using a diagonal argument we

prove that (ξ) has property (B). �

Proof of Theorem 3.1: By Lemma 3.1.5, the 1-tuple (ξ) has property (A). So,
by Theorem 2.12(i) and by the definition of the property (A), there exist δ > 0

and a subsequence (n
′

k) of (nk) such that Oωξ
(δ, (f

n
′

k

), K) 6= ∅. By Remark 3.1.2,

Oωξ
(δ, (fn”

k
), K) 6= ∅ for every subsequence (n”k) of (n

′

k). Consider the next tree
on ω:

T := {(0)} ∪
⋃∞

n=1{(0, m1, . . . , mn) ∈ ωn+1 : m1 < . . . < mn and
‖

∑n
i=1 cifmi‖∞ ≥ δ

∑n
i=1 |ci| for all c1, . . . , cn ∈ R}.

We set M := {n
′

k : k = 1, 2, . . .}. By using a result of Alspach and Argyros

([1; Theorem 3.1]), it is easy to see that (T|N∪{0})
ωξ

6= ∅ for every N ∈ [M ]. By

Lemma 3.1.8, (ξ) has property (B). Therefore, by the definition of the property

(B) there exists a subsequence (n”k) of (n
′

k) such that for every E = {k1 < . . . <

kλ} ∈ Fξ , (where λ ∈ N), the finite sequence (0, n”k1 , . . . , n”kλ
) belongs to T and

since (fk) is uniformly bounded we get that the sequence (fn”
k
) is l1ξ -spreading

model. �

Combining some results of [3] and [8] we obtain the following theorem.

Theorem 3.2. Let K be a compact metric space, 1 ≤ ξ < ω1, (fk) a uniformly
bounded and pointwise converging sequence of continuous real-valued functions

on K, (nk) a strictly increasing sequence of natural numbers and (n
′

k) a subse-

quence of (nk) such that the sequence (fn
′

2k+1

−f
n
′

2k

) is l1ξ -spreading model. Then

γ((fnk
)) > ωξ .

Proof: By using Lemma 2.4(c) (for ζ = ξ) and the definition of l1ξ -spreading

model for the sequence (f
n
′

2k+1

− f
n
′

2k

) there exist a strictly increasing sequence
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(λk) of natural numbers and δ > 0 such that

(∗) δ

m∑

i=1

|ci| ≤ ‖
m∑

i=1

ci(fn
′

2λki
+1

− f
n
′

2λki

)‖∞ ≤ 2(sup
k

‖fk‖∞)
m∑

i=1

|ci|

for every {k1 < . . . < km} ∈ F
′

ξ , c1, . . . , cm ∈ R. For every x ∈ K let Fx = {l ∈

N : |f
n
′

2λl+1

(x) − f
n
′

2λl

(x)| ≥ δ
2}. Since (fk) is pointwise converging the sequence

(f
n
′

2λk+1

− f
n
′

2λk

) converges pointwise to zero and so Fx is finite for every x ∈ K.

We set F = {F ∈ [N]<ω : F ⊆ Fx for some x ∈ K}. We shall prove that F
is adequate. By Definition 2.8 and the definition of F it is enough to show that
the set {χF : F ∈ F} is closed subspace of {0, 1}N with the product topology.
Indeed, If A ⊆ N, A = (an), with χA ∈ cl{0,1}N({χF : F ∈ F}) then for every

n ∈ N there exists xn ∈ K such that {a1, . . . , an} ⊆ Fxn . Then ak ∈ Fxn for
every n ≥ k. Since K is a compact metric space there exist a subsequence (xkn

)
of (xn) and x ∈ K with limn xkn

= x. By the continuity of fk’s we have A ⊆ Fx

and so A is finite and A ∈ F . Hence {χF : F ∈ F} is closed.
By (∗) it is easy to see that ‖ξL

n · ((f
n
′

2λk+1

− f
n
′

2λk

))‖∞ ≥ δ for every L ∈

[N], n ∈ N. Then for every L ∈ [N] and n ∈ N there exists x ∈ K such that

|(ξL
n · ((f

n
′

2λk+1

− f
n
′

2λk

)))(x)| ≥ δ. Also

δ ≤ |(ξL
n · ((f

n
′

2λk+1

− f
n
′

2λk

)))(x)| ≤ 〈ξL
n , Fx〉 · 2 sup

k
‖fk‖∞ +

δ

2
.

Then 〈ξL
n , Fx〉 ≥

δ
4 supk ‖fk‖∞

. So, by Theorem 2.9, there exists a strictly increas-

ing sequence (jk) of natural numbers such that {jl : l ∈ E} ∈ F for all E ∈ Fξ.

We set n”1 = n
′

1, n”2k+1 = n
′

2λjk
+1 and n”2k = n

′

2λjk

for every k ∈ N. Then the

sequence (n”k) is a subsequence of (nk) and for every E = {k1 < . . . < km} ∈ Fξ

there is xE ∈ K such that |fn”
2kj+1

(xE) − fn”
2kj

(xE)| > δ
2 for all 1 ≤ j ≤ m.

Therefore, by Theorem 2.12(ii), γ((fnk
), δ
2 ) > ωξ. Hence γ((fnk

)) > ωξ. �

Theorem 3.3. Let K be a compact metric space, 1 ≤ ξ < ω1 and (fk) a uni-
formly bounded and pointwise converging sequence of continuous real-valued func-
tions on K which is l1ξ -spreading model. Then γ((fnk

)) > ωξ for every strictly

increasing sequence (nk) of natural numbers.

Proof: By induction on 1 ≤ ξ < ω1, it is easy to show that if E = {k1 < . . . <
kλ} ∈ Fξ then F = {2k1 < 2k1 + 1 < . . . < 2kλ < 2kλ + 1} ∈ Fξ. By using

this fact, it is easy to see that if (fk) is l1ξ -spreading model then for every strictly

increasing sequence (nk) of natural numbers the sequence (fn2k+1 − fn2k) is also

l1ξ -spreading model and so, by Theorem 3.2, γ((fnk
)) > ωξ . �
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Combining Theorems 3.1, 3.3, 2.12 and Theorem 3.3 of [8] we get the following
criteria (characterizations) for the l1ξ -spreading model.

Theorem 3.4. Let K be a compact metric space, 1 ≤ ξ < ω1 and (fk) a uni-
formly bounded and pointwise converging sequence of continuous real-valued func-
tions on K. Then the following are equivalent:

(i) there exists a subsequence (f
′

k) of (fk) which is l1ξ -spreading model;

(ii) there are ǫ > 0 and a strictly increasing sequence (nk) of natural numbers

such that for every subsequence (n
′

k) of (nk) and for every E = {k1 < . . . <
kλ} ∈ Fξ (where λ ∈ N) there is xE ∈ K with |f

n
′

2kj+1

(xE)− f
n
′

2kj

(xE)| > ǫ for
all 1 ≤ j ≤ λ;

(iii) there are ǫ > 0 and a strictly increasing sequence (nk) of natural numbers
such that for every E = {k1 < . . . < kλ} ∈ Fξ (where λ ≥ 2) there is xE ∈ K
with |fnkj+1

(xE)− fnkj
(xE)| > ǫ for all 1 ≤ j ≤ λ − 1.

Theorem 3.5. Let K be a compact metric space, f a bounded real-valued func-
tion on K and 1 ≤ ξ < ω1. Then the following hold:

(i) If f /∈ Bξ
1(K) and (fk) ⊆ C(K) a uniformly bounded sequence pointwise

converging to f , then (fk) has a subsequence which is l1ξ -spreading model (cf. [7]

or [10; Theorem 3.8]).

(ii) If (fk) ⊆ C(K) is a uniformly bounded sequence pointwise converging
to f such that for every sequence (gk) of convex blocks of (fk) (i.e., gk ∈
conv((fp)p≥k)) there exists a subsequence of (gk) which is l1ξ -spreading model,

then f /∈ Bξ
1(K). (Here conv((hk)) denotes the set of convex combinations of the

h′ks.)

Proof: The condition (i) is obvious by Theorem 3.1 and using that β(f) ≤
γ((fk)) (cf. [6; Proposition 1.1]).

(ii) By [6; Theorem 1.3] there exists a sequence (gk) of convex blocks of (fk)

such that β(f) = γ((gk)). By the hypothesis, let (g
′

k) a subsequence of (gk) which

is l1ξ -spreading model. By Theorem 3.3 we have γ((g
′

k)) > ωξ. Also γ((g
′

k)) ≤

γ((gk)) = β(f). Hence β(f) > ωξ i.e., f /∈ Bξ
1(K). �

It can be noticed that Theorems 3.3 and 3.5 have been proved for the first
time in the preprint [9], but for completeness we gave new proofs. Also for ξ = 1,
Theorem 3.5 has been proved by Haydon, Odell and Rosenthal in [5].

Theorem 3.6. Let K be a compact metric space and 1 ≤ ξ < ω1. Then the
following hold:

(i) If every uniformly bounded and pointwise converging to zero sequence
(fk) ⊆ C(K) with infk ‖fk‖∞ > 0 has a subsequence which is l1ξ -spreading model,

then B1(K) \ C(K) ⊆ B1(K) \ B
ξ
1(K).
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(ii) If no uniformly bounded and pointwise converging to zero sequence (fk) ⊆

C(K) has a subsequence which is l1ξ -spreading model then B1(K) ⊆ Bξ
1(K).

Proof: (i) Let f ∈ B1(K) \ C(K). By [6; Theorem 1.3] there exists a uni-
formly bounded sequence (gk) ⊆ C(K) pointwise converging to f such that
γ((gk)) = β(f). Then for every strictly increasing sequence (nk) of natural num-
bers the sequence (gn2k+1−gn2k) is pointwise converging to zero and infk ‖gn2k+1−
gn2k‖∞ > 0 because f is not continuous. Hence there exists a subsequence (hk) of

(gn2k+1−gn2k) which is l
1
ξ -spreading model. Choose a strictly increasing sequence

(jk) of natural numbers such that hk = gn2jk+1
− gn2jk

for all k ∈ N. We set

n
′

1 = n1, n
′

2k = n2jk
and n

′

2k+1 = n2jk+1 for every k ∈ N. So, hk = g
n
′

2k+1

−g
n
′

2k

for all k ∈ N. Therefore, by Theorem 3.2, γ((gk)) > ωξ. Hence β(f) > ωξ, i.e.,

f /∈ Bξ
1(K). This completes the proof of (i).

(ii) Assume the contrary. Then there exists f ∈ B1(K) \ Bξ
1(K). Let (fk) ⊆

C(K) be a uniformly bounded sequence which converges pointwise to f . By

Theorem 3.5(i), there exists a subsequence (f
′

k) of (fk) which is l
ξ
1-spreading

model. Then the sequence (f
′

2k+1 − f
′

2k) converges pointwise to zero. Also, by

using that if F = {k1 < . . . < kλ} ∈ Fξ then F
′

= {2k1 < 2k1 + 1 < . . . < 2kλ <

2kλ + 1} ∈ Fξ, it is easy to show that the sequence (f
′

2k+1 − f
′

2k) is l1ξ -spreading

model, a contradiction. �

Acknowledgment. I am grateful to referee for his (her) useful corrections.
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