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Limit points of arithmetic means

of sequences in Banach spaces

Roman Lávička

Abstract. We shall prove the following statements: Given a sequence {an}∞n=1 in a
Banach space X enjoying the weak Banach-Saks property, there is a subsequence (or a
permutation) {bn}∞n=1 of the sequence {an}∞n=1 such that

lim
n→∞

1

n

nX
j=1

bj = a

whenever a belongs to the closed convex hull of the set of weak limit points of {an}∞n=1.
In case X has the Banach-Saks property and {an}∞n=1 is bounded the converse assertion
holds too. A characterization of reflexive spaces in terms of limit points and cores of
bounded sequences is also given. The motivation for the problems investigated goes back
to Lévy laplacian from potential theory in Hilbert spaces.

Keywords: Banach-Saks property, arithmetic means, limit points, subsequences, permu-
tations of sequences

Classification: 46B20, 40H05, 40G05, 47F05

1. Introduction

The motivation for the problems investigated goes back to Lévy laplacian from
potential theory in Hilbert spaces, see [8], [9] and [10]. In discussing to what
extent the definition of Lévy laplacian depends on the choice of an orthonormal
basis, P. Lévy used the following result (without giving any proof of it), see [10,
p. 63].

Proposition 1. Given a bounded sequence {an}∞n=1 of real numbers and a real
number a satisfying lim inf an ≤ a ≤ lim sup an, there is a permutation {bn}∞n=1
of the sequence {an}∞n=1 such that

lim
n→∞

1

n

n
∑

j=1

bj = a.

The main goal of this note is to generalize this result for sequences in Banach
spaces. First of all, we introduce some notation. Let Rm be the Euclidean space
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of dimension m. Denote by P the set of all permutations of the set N of natural
numbers (i.e., the set of all one-to-one mappings ρ of N onto N) and by I the set
of all strictly increasing mappings r : N → N. In what follows we shall assume
that X is a real Banach space unless otherwise specified. A sequence {an}∞n=1 in
X is said to be (C, 1)-convergent provided that there is a ∈ X such that

(1) a = lim
n→∞

1

n

n
∑

j=1

aj ,

i.e., a = (C, 1)- limn→∞ an.
Let a = {an}∞n=1 be a sequence in X. Then w- limn→∞ an stands for the weak

limit of a if it exists. Denote

L(a) = {a ∈ X; ∃ r ∈ I : w- lim
n→∞

ar(n) = a},

i.e., L(a) is the set of weak limit points of a in X,

K(a) = {a ∈ X; ∃ r ∈ I : (C, 1)- lim
n→∞

ar(n) = a}

and
N (a) = {a ∈ X; ∃ ρ ∈ P : (C, 1)- lim

n→∞
aρ(n) = a}.

For M ⊂ X denote by co(M) the convex hull ofM , byM the closure ofM in the

norm topology and co(M) = co(M). Finally, define the so-called core of a by

C(a) =
∞
⋂

N=1

co({an}n≥N ).

Recall that a Banach space X is said to have the weak Banach-Saks property
(WBS) provided that each weakly convergent sequence in X possesses a (C, 1)-
convergent subsequence.

Remark 1. It was already known to Cauchy that if {an}∞n=1 is a sequence of real
numbers and L ∈ [−∞,+∞], then limn→∞ an = L implies (C, 1)- limn→∞ an =
L. Thus it is easily seen that the weak and the (C, 1)-limit of a sequence in
a Banach space are the same if both exist. Obviously, a Banach space X is
(WBS) if and only if L(a) ⊂ K(a) for each sequence a in X.

Finally, a Banach space X is said to have the Banach-Saks property (BS) pro-
vided that even each bounded sequence in X admits a (C, 1)-convergent subse-
quence. It is well-known that every uniformly convex space has the Banach-Saks
property and that every Banach space enjoying the Banach-Saks property is re-
flexive, see [3, p. 78]. Thus a Banach space X is (BS) if and only if X is (WBS)
and reflexive. The main result is the following theorem.
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Theorem. Let a be a sequence in a Banach space X, L = L(a), K = K(a),
N = N (a) and C = C(a). The following statements hold:

(i) if X is (WBS), then co(L) ⊂ K ⊂ N ⊂ C;
(ii) if X is (BS) and a is bounded, then co(L) = K = N = C.

Remark 2. Examples at the end of the note show that equalities in (ii) fail if X
is supposed to be (WBS) only or if unbounded sequences are considered.

Remark 3. Obviously, in case X = R Theorem includes Proposition 1 stated
above. (Indeed, in this case for a bounded sequence a = {an}∞n=1 of real numbers
co(L(a)) is the closed interval with endpoints lim inf an and lim sup an.)

2. Proof of Theorem

Our proof of Theorem is based on several auxiliary results. Recall that a Ba-
nach space X is (BS) if and only if X is (WBS) and reflexive. Then, by the
following fact, it is sufficient to prove only the first part of Theorem.

Fact. If X is a Banach space, then the following statements are equivalent to
each other:

(i) the space X is reflexive;
(ii) each bounded sequence a in X satisfies L(a) 6= ∅;
(iii) each bounded sequence a in X satisfies C(a) 6= ∅;
(iv) each bounded sequence a in X satisfies co(L(a)) = C(a).

Proof: By the Eberlein-Šmulian theorem [4, p. 18], (i) is equivalent to (ii). Since
L(a) ⊂ C(a) for each sequence a in X, (ii) implies (iii).
Now we show that (i) follows from (iii) by James’ theorem ([7]) according to

which a Banach space X is reflexive if and only if each element of the dual X∗

attains its norm on the closed unit ball B in X. Indeed, for a given f ∈ X∗ with
‖f‖ = 1 there is a sequence a = {an}∞n=1 in B such that limn→∞ f(an) = 1.
Putting

cN = inf{f(x); x ∈ co({an}n≥N ), N ∈ N,

we get limN→∞ cN = 1. Denoting C = C(a), we have

cN ≤ inf f(C) ≤ sup f(C) ≤ 1, N ∈ N

and, as a result, f = 1 on C. By (iii), C 6= ∅ so that f attains its norm on B.
Now we prove that (i) implies (iv). Let X be reflexive and a = {an}∞n=1 be

a bounded sequence in X. Denote L = L(a) and C = C(a). Assume on the
contrary that there is a ∈ C \ co(L). By a geometric version of the Hahn-Banach
theorem ([2, p. 111]), there is f ∈ X∗ and α ∈ R such that

f(a) > α > sup{f(x); x ∈ co(L)}.
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Now we are going to show that the half-space H = {x ∈ X; f(x) ≥ α} intersects
L, which is impossible. Because of the boundedness of a and the reflexivity of X
it is sufficient to show that {n ∈ N; an ∈ H} is infinite. For each N ∈ N we
have a ∈ CN = co({an}n≥N ) and, as a result, there is n ≥ N such that an ∈ H .
Otherwise, we would get f(a) ≤ α, which is a contradiction; cf. [1, p. 139].
Finally, let X be a non-reflexive Banach space. Of course, there is a bounded

sequence b = {bn}∞n=1 in X having no weakly convergent subsequences, i.e., with
L(b) = ∅. Then the bounded sequence a = {an}∞n=1 in X, defined by a2n−1 = bn

and a2n = −bn, n ∈ N, satisfies L(a) = ∅ and (C, 1)- limn→∞ an = 0, which
shows that (iv) implies (i). �

Remark 4. Sequences {an}∞n=1 and {bn}∞n=1 in a Banach space X are said to
be tail equivalent provided that there are integers k and l such that ak+n = bl+n,
n ∈ N. For such sequences it is easy to check that (C, 1)- limn→∞ an = L if and
only if (C, 1)- limn→∞ bn = L.

Lemma 1. If a is a sequence in a Banach space X, then N (a) ⊂ C(a).

Proof: Let ρ ∈ P , {an}∞n=1 ⊂ X and a ∈ X be such that (C, 1)- limn→∞ aρ(n) =

a. Given N ∈ N, we have to show that a ∈ CN = co({an}n≥N ). Choose
an m ∈ N such that {1, . . . , N − 1} ⊂ ρ({1, . . . , m}). Then, by Remark 4,
a = (C, 1)- limn→∞ aρ(n+m) ∈ CN . �

Lemma 2. If a is a sequence in X, then K(a) ⊂ N (a).

Proof: It is sufficient to prove that if {an}∞n=1 ⊂ X and p ∈ I are such that
(C, 1)- limn→∞ ap(n) = 0, then there is ρ ∈ P with (C, 1)- limn→∞ aρ(n) = 0.

In addition, we may assume that N \ p(N) is infinite because (C, 1)-limits of
two tail equivalent sequences are the same. Thus there is a unique q ∈ I with
q(N) = N \ p(N). Denote by ‖ . ‖ the norm on X. We claim that there is r ∈ I
such that, for each m ∈ N,

(2)

∥

∥

∥

∥

1

n+m

( m
∑

j=1

aq(j) +

n
∑

j=1

ap(j)

)
∥

∥

∥

∥

≤
1

n+m

∥

∥

∥

∥

m
∑

j=1

aq(j)

∥

∥

∥

∥

+
n

n+m

∥

∥

∥

∥

1

n

n
∑

j=1

ap(j)

∥

∥

∥

∥

<
1

m
, n ≥ r(m).

Indeed, for a given m ∈ N the middle term of (2) tends to 0 as n → ∞. Set
r(0) = 0 and, for each m ∈ N, ρ(r(m) +m) = q(m) and

ρ(j) = p(j − m+ 1), r(m − 1) +m − 1 < j < r(m) +m.

Then ρ ∈ P and, by (2), (C, 1)- limn→∞ aρ(n) = 0. �

In order to prove Theorem we have to show only the first inclusion in (i). To do
this, we use a deep result concerning Banach spaces with the weak Banach-Saks
property.



Limit points of arithmetic means of sequences in Banach spaces 101

Definition. A sequence {an}∞n=1 in X is said to be stable provided that there is
a ∈ X such that

lim
n→∞

sup

{
∥

∥

∥

∥

1

n

n
∑

j=1

ar(j) − a

∥

∥

∥

∥

; r ∈ I

}

= 0,

i.e., (C, 1)- limn→∞ ar(n) = a uniformly with respect to r ∈ I.

Then it holds that X is (WBS) if and only if each weakly convergent sequence
in X admits even a stable subsequence, see [6] and cf. also [5].
Let Q be the set of rational numbers. For M ⊂ X denote by coQ(M) the set

of all convex combinations of points of M with rational coefficients.

Lemma 3. Let X be (WBS), a = {an}∞n=1 be a sequence in X and a ∈
coQ(L(a)). Then there is a sequence {ωn}∞n=1 of positive numbers tending to
0 such that, for each r0 ∈ N, there is r ∈ I with r(1) > r0 and

∥

∥

∥

∥

1

n

n
∑

j=1

ar(j) − a

∥

∥

∥

∥

≤ ωn, n ∈ N

(in particular, (C, 1)- limn→∞ ar(n) = a).

Proof: Denote L = L(a). Given a ∈ coQ(L), there are m ∈ N, {α1, . . . , αm} ⊂
Q ∩ (0, 1] and {c1, . . . , cm} ⊂ L such that

a =

m
∑

j=1

αjcj and 1 =

m
∑

j=1

αj .

Of course, there are {k1, . . . , km} ⊂ N and l ∈ N such that αj = kj/l, j =
1, . . . , m. Let us remark that l = k1 + · · · + km. For each j = 1, . . . , m, there
is pj ∈ I such that w- limn→∞ apj(n) = cj (and, in particular, {apj(n)}

∞
n=1 is

bounded) and because X is (WBS) we may choose pj such that {apj(n)}
∞
n=1 is in

addition stable, i.e., the numbers

(3) ωj
n = sup

{
∥

∥

∥

∥

1

n

n
∑

i=1

apj(r(i)) − cj

∥

∥

∥

∥

; r ∈ I

}

tend to 0 as n → ∞. Let

K = max{ sup
n∈N

‖apj(n)‖; j = 1, . . . , m} < +∞.

For each h ∈ N0 = N∪{0} and t ∈ {0, . . . , l− 1}, put ω0hl+t = 2K(l− 1)/(hl+1)
and

(4) ωhl+t =

m
∑

j=1

αjω
j
hkj
+ ω0hl+t
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where ωj
0 = 0, j = 1, . . . , m. Of course, limn→∞ ωn = 0.

Now, for a given r0 ∈ N, we construct a desired r ∈ I by induction on h: Put
r(0) = r0 and rj(0) = 0, j = 1, . . . , m. Assume that, for some h ∈ N0, we have
defined integers

r0 = r(0) < r(1) < · · · < r(hl) and

0 = rj(0) < rj(1) < · · · < rj(hkj), j = 1, . . . , m.

Then there is u ∈ N such that r1(hk1) < u and r(hl) < p1(u). For t = 1, . . . , k1,
put

r1(hk1 + t) = u+ t − 1 and r(hl + t) = p1(r1(hk1 + t)).

Next assume that, for 1 ≤ j ≤ m − 1, we have defined

r0 = r(0) < · · · < r(hl +

j
∑

i=1

ki) and 0 = ri(0) < · · · < ri((h+ 1)ki), i ≤ j.

Then there is v ∈ N such that rj+1(hkj+1) < v and r(hl +
∑j

i=1 ki) < pj+1(v).
For t = 1, . . . , kj+1, put

(5) rj+1(hkj+1+ t) = v+ t− 1 and r(hl+

j
∑

i=1

ki+ t) = pj+1(rj+1(hkj+1+ t)).

So we get

r0 = r(0) < · · · < r((h+ 1)l) and 0 = rj(0) < · · · < rj((h+ 1)kj), j = 1, . . . , m.

Thus we have constructed r ∈ I and rj ∈ I, j = 1, . . . , m which satisfy (5).
Denote for each j = 1, . . . , m

sj
n =

1

n

n
∑

k=1

apj(rj(k)) and sn =
1

n

n
∑

k=1

ar(k), n ∈ N.

Given n ∈ N, there are unique h ∈ N0 and t ∈ {0, . . . , l−1} such that n = hl+ t.
Putting s0 = a, it is easily seen that ‖sm − sm−1‖ ≤ 2K/m, m ∈ N. Therefore

‖shl+t − shl‖ ≤
t

∑

j=1

‖shl+j − shl+j−1‖ ≤
2K

hl + 1
(l − 1) = ω0hl+t.

If h > 0 then, by (5),

shl =
1

hl

m
∑

j=1

hkjs
j
hkj
=

m
∑

j=1

αjs
j
hkj

and hence, by (3),

‖shl − a‖ ≤
m

∑

j=1

αj‖s
j
hkj

− cj‖ ≤
m

∑

j=1

αjω
j
hkj

.

Finally, by (4), we get ‖sn − a‖ ≤ ωn, which completes the proof. �
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Lemma 4. If X is (WBS) and a is a sequence in X, then co(L(a)) ⊂ K(a).

Proof: Let a = {an}∞n=1 ⊂ X and L = L(a). Given a ∈ co(L), there are

aN ∈ coQ(L), N ∈ N such that limN→∞ aN = a. We may assume that

a = 0 and ‖aN‖ < 1
N , N ∈ N. By induction we construct r ∈ I such that

(C, 1)- limn→∞ ar(n) = 0. Of course, by Lemma 3, there is n1 ∈ N and r1 ∈ I
such that

∆1 = sup
n≥n1

∥

∥

∥

∥

1

n

n
∑

j=1

ar1(j)

∥

∥

∥

∥

< 1.

Put l1 = n1 and r(j) = r1(j) for each j ≤ n1. Assume that for some N ∈ N
we have nN ∈ N, lN ∈ N, rN ∈ I and r(1) < r(2) < · · · < r(nN ) such that
r(nN ) < rN (lN + 1) and

(6) ∆N = sup
n∈N0

∥

∥

∥

∥

1

nN + n

( nN
∑

j=1

ar(j) +

lN+n
∑

j=lN+1

arN (j)

)
∥

∥

∥

∥

<
1

N
.

By Lemma 3, for aN+1 ∈ coQ(L) there is a sequence {ωN+1
n }∞n=1 of positive

numbers tending to 0 such that for each r0 ∈ N there is p ∈ I with p(1) > r0 and

(7)

∥

∥

∥

∥

1

n

n
∑

j=1

ap(j) − aN+1

∥

∥

∥

∥

≤ ωN+1
n , n ∈ N.

Of course, there is n0 ∈ N such that ωN+1
n + ‖aN+1‖ ≤ 1

N , n > n0. Choose

m ∈ N such that, denoting K = max{ωN+1
n + ‖aN+1‖; n = 1, . . . , n0},

(8) ∆N +
n0

nN +m+ n0
K ≤

1

N
.

Put r(nN + j) = rN (lN + j) for j = 1, . . . , m. Thus there is rN+1 ∈ I such that
rN+1(1) > r(nN +m) and

(9)

∥

∥

∥

∥

1

n

n
∑

j=1

arN+1(j) − aN+1

∥

∥

∥

∥

≤ ωN+1
n , n ∈ N.

For all n ∈ N0,

(10)

∥

∥

∥

∥

1

nN +m+ n

( nN+m
∑

j=1

ar(j) +

n
∑

j=1

arN+1(j)

)∥

∥

∥

∥

≤
1

N
.

Indeed, for all n ∈ N,

(11)

∥

∥

∥

∥

1

n

n
∑

j=1

arN+1(j)

∥

∥

∥

∥

≤ ωN+1
n + ‖aN+1‖,



104 R.Lávička

which is not greater than 1/N if n > n0 and than K if n ≤ n0. Furthermore, for
a given n ∈ N0 the term on the left-hand side of (10) is not greater than

(12)
nN +m

nN +m+ n

∥

∥

∥

∥

1

nN +m

nN+m
∑

j=1

ar(j)

∥

∥

∥

∥

+
n

nN +m+ n

∥

∥

∥

∥

1

n

n
∑

j=1

arN+1(j)

∥

∥

∥

∥

.

In case n > n0, by (6) and (11), (12) is a convex combination of two numbers

not greater than 1
N and hence (10) is true. This holds also in case n ≤ n0 by

(8). Finally, there is lN+1 ∈ N such that, denoting nN+1 = nN +m+ lN+1 and
r(nN +m+ j) = rN+1(j) for j = 1, . . . , lN+1,

∆N+1 = sup
n∈N0

∥

∥

∥

∥

1

nN+1 + n

( nN+1
∑

j=1

ar(j) +

lN+1+n
∑

j=lN+1+1

arN+1(j)

)∥

∥

∥

∥

<
1

N + 1
.

In particular, by (6) and (10),

∥

∥

∥

∥

1

n

n
∑

j=1

ar(j)

∥

∥

∥

∥

≤
1

N

for each nN ≤ n < nN+1. Thus (C, 1)- limn→∞ ar(n) = 0. �

The proof of Theorem follows now immediately from Lemmas 1, 2, 4 and Fact.

3. Counterexamples and remarks

We begin with several examples showing that some of assertions of Theorem
cannot be generalized.

Example 1. There is a sequence a of real numbers such that co(L(a)) 6= K(a).
In fact, given {bn}∞n=1 ⊂ R such that limn→∞ bn = +∞ and limn→∞ bn/n = 0,
it is easy to show that the sequence a = {an}

∞
n=1, defined by

a2n−1 = bn and a2n = −bn, n ∈ N,

satisfies that L(a) = ∅ and (C, 1)- limn→∞ an = 0 and so 0 ∈ K(a).

Remark 5. Let {an}
∞
n=1 be a sequence in a Banach spaceX and sn=

1
n

∑n
j=1 aj ,

n ∈ N. Then it is easy to see that limn→∞(sn − sn−1) = 0 if and only if
limn→∞ an/n = 0.

Example 2. There is a sequence a of real numbers such that K(a) 6= N (a). In
fact, define a = {an}∞n=1 by a2n−1 = 0 and a2n = n, n ∈ N. Then K(a) = {0}.
Indeed, if p ∈ I and {ap(n)}

∞
n=1 is (C, 1)-convergent, then ap(n) = 0 except for
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a finite number of values of n. Otherwise, ap(n)/n ≥ ap(n)/p(n) = 1/2 for an

infinite number of values of n and hence it does not hold that

lim
n→∞

ap(n)

n
= 0

which is impossible by Remark 5. Now we show N (a) = [0,+∞). Obviously,
N (a) ⊂ [0,+∞). Let a ∈ [0,+∞). Then there is r = ra ∈ I such that
limn→∞(r(n) − n) = +∞, limn→∞ n2/2r(n) = a and r(n) ≥ n, n ∈ N. In-
deed, denoting by [x] the greatest integer less or equal to a real number x, put
r0(n) = n3, n ∈ N and ra(n) = [n

2/2a] + n, n ∈ N if a ∈ (0,+∞). Then
the sequence {bn}∞n=1, defined by br(n) = n, n ∈ N and bn = 0 otherwise, is

a permutation of the sequence {an}
∞
n=1. Denote

sn =
1

n

n
∑

j=1

bj , n ∈ N.

For each n ∈ N and k ∈ N, r(n) ≤ k < r(n + 1), we have

n(n+ 1)

2r(n+ 1)
≤ sk =

n(n+ 1)

2k
≤

n(n+ 1)

2r(n)
.

Thus limn→∞ sn = a and hence a ∈ N (a).

Example 3. There is a sequence a of real numbers such that

(∅ =)N (a) 6= C(a)(= R).

In fact, define a = {an}∞n=1 by an = (−1)nn, n ∈ N. By definition, C(a) = R.
Now we show that N (a) = ∅. Assume on the contrary that there is ρ ∈ P such
that {aρ(n)}

∞
n=1 is (C, 1)-convergent. Obviously, for an infinite number of values

of n, ρ(n) ≥ n, and hence

|aρ(n)|

n
≥

|aρ(n)|

ρ(n)
= 1,

which is impossible by Remark 5.

Let us note that the Proposition 1 stated at the beginning of the note follows
easily from

Proposition 2. Let {bn}∞n=1 and {cn}∞n=1 be subsequences of a sequence {an}∞n=1
of real numbers with

b = lim
n→∞

bn < lim
n→∞

cn = c.
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If b = −∞ or c = +∞, then assume that limn→∞ bn/n = 0 or limn→∞ cn/n = 0,
respectively. Then for each a ∈ [b, c] there is a permutation ρ of N such that

lim
n→∞

1

n

n
∑

j=1

aρ(j) = a.

Let us remark that there is a natural proof of Proposition 2 which is quite
similar to that of the Riemann derangement theorem which tells us that a condi-
tionally convergent series of real numbers can be rearranged to sum to any real
number.
We end with open problems. It would be interesting

(1) to find a bounded sequence a in a Banach space X enjoying (WBS) such
that K(a) 6= N (a) or N (a) 6= C(a);

(2) to characterize Banach spaces X in which K(a) and N (a) are closed and
convex for any bounded sequence a inX. Let us remark that, by Theorem,
this is satisfied in any X with (BS).
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