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Strongly sequential spaces

Frédéric Mynard

Abstract. The problem of Y. Tanaka [10] of characterizing the topologies whose products
with each first-countable space are sequential, is solved. The spaces that answer the
problem are called strongly sequential spaces in analogy to strongly Fréchet spaces.
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Introduction

In 1976 Y. Tanaka investigated in [10] the problem of characterizing the topolo-
gies whose product with every first-countable topology is sequential (1). He ob-
tained some necessary conditions and some sufficient conditions, but he estab-
lished a characterization only for Fréchet topologies. His result reads as follows.

Theorem 0.1 ([10, Theorem 1.1]). Let X be a Fréchet topology, or a sequential
topology each of whose points is a Gδ set. Let Y be first-countable. Then X×Y is
sequential if and only if X is strongly Fréchet or Y is locally countably compact.

I present here an analogous result with neither the assumptions of Fréchetness
nor of separation (Theorem 5.1). The solution is based on the extension of the
problem to the setting of convergences in which I get a characterization. The
solution of the problem of Y. Tanaka appears as a particularly eloquent application
of general methods of continuous duality developed in [8].
The problem of Tanaka can be decomposed into two parts:

Problem 0.2. Characterize topologies (or convergences) ξ such that ξ × τ is
sequential for every first-countable topology (convergence) τ .

Problem 0.3. Characterize couples of topologies (convergences) (ξ, τ) such that
τ is first-countable and ξ × τ is sequential.

Problem 0.2 is related to the classical theorem [7, Theorem 4.2] of Michael that
states that a Hausdorff regular topology ξ is locally countably compact if and
only if its product with every sequential topology is sequential. Indeed, regular
Hausdorff topologies whose products with each Fréchet topology are sequential

1In [10], all topologies are T1 and regular.
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are also exactly locally countably compact ones (see [4, Theorem 12.2]), but no
answer of similar type to Problem 0.2 was known.
In this paper I introduce the class of strongly sequential convergences, that

answers Problem 0.2 in the setting of convergences. I give several characterizations
of this class of convergences. Strongly sequential convergences also provide a full
answer to Problem 0.3 in the case of first-countable regular T1 topologies τ . Their
relationship to sequential spaces is analogous to that of strongly Fréchet spaces
with respect to general Fréchet spaces.

1. Convergences

A convergence ξ on a set X is a relation between X and the filters on X ,
denoted by x ∈ limξ F whenever x and F are in relation, such that x ∈ limξ(x)
for each fixed ultrafilter (x) and such that limξ F ⊂ limξ G if F ⊂ G.
I denote by |ξ| the underlying set of the convergence ξ. A convergence ξ is finer

than a convergence ϑ (ξ ≥ ϑ) whenever limξ F ⊂ limϑ F for every filter F . A map
f : |ξ|→ |τ | is continuous if f(limξ F) ⊂ limτ f(F); this implies the definitions
of initial and final convergences, hence of product, sum, subspace and so on. If
f : |ξ| → |τ |, then I will denote by f− the inverse relation of f and by f−τ the
initial convergence with respect to f and τ .
Two families A and B of subsets of X are said to mesh, in symbol A#B,

whenever A ∩ B 6= ∅ for every A ∈ A and B ∈ B. A subset A of X is ξ-closed
whenever limξ F ⊂ A for every filter F with A#F . The set of all ξ-closed sets
gives rise to a topology, called topological modification of ξ and denoted Tξ.
The map T is a concrete reflector called the topologizer. Let F be a filter on a
convergence space X . The adherence of F is the union of the limits of all filters
that are finer than F :

adhξ F =
⋃

G⊃F

limξ G.

In particular, the adherence adhξ A of a set A is the adherence of its principal
filter, while the closure clξ A of A is the (idempotent) adherence of A for Tξ.
There are various ways to characterize the topologizer. For example,

(1.1) limTξ F =
⋂

C#F

clξ C.

For each point x, the neighborhood filter for Tξ is denoted by Nξ(x). Continuous

maps from a convergence ξ to the Sierpiński topology $ (2) are precisely the
indicator functions of ξ-closed sets (3). Therefore

(1.2) Tξ =
∨

f∈C(ξ,$)

f−$,

2that is, the two point set {0, 1} in which 1 is isolated while 0 is not.
3The indicator function of A takes the value 0 on A and 1 on Ac.
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where C(ξ, $) denotes the set of continuous maps from ξ to $.
A convergence ξ is a pretopology whenever x ∈ limξ F provided x ∈ adhξ A for

each A#F . The map P assigning to each convergence ξ the finest pretopology
coarser than ξ is a concrete reflector.

(1.3) limPξ F =
⋂

A#F

adhξ A.

For each point x, the infimum of all filters that ξ-converge to x is a Pξ-convergent
filter called vicinity filter of x and denoted Vξ(x). The pretopologizer may be also

characterized via initial images of a single pretopology Λ (4).

(1.4) Pξ =
∨

f∈C(ξ,Λ)

f−Λ.

A class J of filters is said to be composable if it contains the class of principal
filters and if HF (5) is a (possibly degenerate) J-filter on Y for each J-filter F on
X , each set Y and each J-filter H on X ×Y . In particular, the image of a J-filter
under a relation (identified with its principal filter) is a J-filter. For example the
classes of countably based filters and of principal filters are composable while the
class of filters generated by sequences is not.
If J is a class of filters, the coreflector BaseJ on J-based convergences is defined

by

(1.5) x ∈ limBaseJξ F ⇐⇒ ∃
G≤F ,G∈J

x ∈ limξ G.

The coreflector on countably based convergences is denoted First, while the
coreflector on convergences based in filters generated by sequences is denoted
Seq. Extending the notion of sequential topology, a convergence is said to be
sequential if every sequentially closed set is closed, that is, if Tξ = T Seq ξ, or
equivalently if

(1.6) ξ ≥ T First ξ.

Hence, a convergence ξ solves Problem 0.2 if and only if ξ × τ ≥ T First(ξ × τ)
for every τ = First τ , equivalently, if and only if

(1.7) ξ × τ ≥ T (First ξ × τ)

for every convergence τ = First τ .
In the next sections, I characterize such convergences both internally and in

terms of product properties.

4The underlying set of Λ is the three point set {0, 1, 2} endowed with the following pretopo-
logy: V(0) = {Λ}, V(1) = {Λ}, V(2) =

�
{0, 1, 2}, {1, 2}

	
. See [1, II.2] for details.

5HF = {y : ∃x∈F (x, y) ∈ H} and HF is the filter generated by {HF : H ∈ H, F ∈ F}.
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2. Countably Antoine convergences

As indicated in the introduction, continuous duality plays a crucial role in the
characterization of strongly sequential spaces. Given two convergences ξ and σ,
the continuous convergence σ[ξ] on the set of continuous mappings from ξ to σ is
the coarsest convergence on |σ[ξ]| that makes the evaluation map w : ξ×σ[ξ]→σ
defined by w(x, f) = f(x) continuous. The reason why continuous convergence
appears naturally in many problems that involve products is the exponential law:

(2.1) σ[ξ × τ ] = σ[ξ][τ ],

for every convergences ξ, τ , σ. Here the equality means the homeomorphism via
the transposition map t : |σ[ξ × τ ]|→ |σ[ξ][τ ]| defined by tf(y)(x) = f(x, y). In
this paper I am primarily concerned with the duality between ξ and $[ξ]. Given
a filter G on |$[ξ]|, denote by

(2.2) |G| = {
⋃

A∈G

A : G ∈ G}

the reduced filter of G. It follows from the definition that a filter G converges to
A0 for $[ξ] (in symbols, A0 ∈ lim$[ξ] G) if and only if

(2.3) adhξ |G| ⊂ A0.

Recall that a convergence ξ is said to be Antoine ([1]) whenever ξ = i−($[$[ξ]])
where i : |ξ|→ |$[$[ξ]]| is the natural injection from ξ to its bidual. More generally,
if J is a composable class of filters, I call a convergence J-Antoine whenever
ξ = AJξ, where the reflector AJ is defined by

(2.4) AJξ = i−($[BaseJ($[ξ])]).

In particular, if J stands for the class of countably based filters, then the
reflector on J-Antoine convergences is denoted Aω , and it is denoted A if J is the
class of all filters.
A convergence is said to be atomic if its all but one point are isolated.

Theorem 2.1. Let J be a composable class of filters. The convergence AJθ is
the coarsest convergence on |θ| among the convergences α that fulfill

(2.5) α × τ ≥ T (θ × τ),

for each J-based convergence τ (equivalently, for each atomic J-based topology).

Proof: Assume α � AJθ. There exists a filter F such that x0 ∈ limα F but
i(x0) /∈ lim$[BaseJ($[θ])] i(F). Consequently, there exists a continuous map f0 from

θ to $ and a J-filter G0 such that f0 ∈ lim$[θ] G0 but

(2.6) f0(x0) /∈ lim$w(F × G0).
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Let τ be the atomic J-based topology on |$[θ]| defined by Nτ (f0) = G0 ∧ (f0).
Since τ is finer than $[θ], the evaluation w : θ × τ → $ is continuous. In view of
(2.6) and of (1.2), I conclude that α × τ � T (θ × τ), contrary to (2.5).
Conversely, if (x, y) ∈ limAJθ×τ (F × G) and f ∈ C(θ × τ, $), then f(x, y) ∈

lim$ f(F×G). Indeed, f(F×G) =t f(G)(F) and tf(G) is a J-filter by composabil-

ity. Since f is continuous, tf is also continuous so that tf(y) ∈ limBaseJ$[θ](
tf)(G).

Consequently, f(x, y) =t f(y)(x) ∈ lim$ w(F ,t f(G)) = lim$ f(F × G), by defini-
tion of AJ. Hence, (2.5) holds, in view of (1.2).

�

In particular, if J is the class of countably based filters, atomic J-based topolo-
gies are metrizable.
Now I give an explicit description of the reflector AJ. By definition,

adξ A =
⋃

a∈A

limξ(a), adTξ A =
⋃

a∈A

clξ a.

Let HadTξ
denote the filter generated by {adTξ H : H ∈ H} and let (J)adTξ

denote the class of J-filters H for which H = HadTξ
.

Lemma 2.2. Let J be a composable class of filters. A filter on |ξ| is the reduced
filter of a J-filter on |$[ξ]| if and only if it is a (J)adTξ

-filter.

Proof: If H is the reduced filter of a J-filter G, it is a J-filter because H is the
inverse image of G under the relation {(x, A) ∈ |ξ| × |$[ξ]| : x ∈ A}. Moreover,
H = HadTξ

, because a union of closed sets is closed for adTξ.

Conversely, if H ∈ (J)adTξ
then the filter H̃ generated by {clξ h : h ∈ H}H∈H

is the image of H under the relation {(x, clξ x) : x ∈ |ξ|}. Hence H̃ is a J-filter

such that H = |H̃|. �

Theorem 2.3. If J is a composable class of filters, then the reflector AJ is given

by

(2.7) limAJξ F =
⋂

(J)adTξ
∋H#F

clξ(adhξ H).

Proof: By definition, x0 ∈ limAJξ F if and only if 1 ∈ lim$w(F × G), whenever
G is a J-filter that $[ξ]-converges to a ξ-closed set A such that x0 /∈ A. In view
of (2.3), there exists a ξ-closed set A not containing x0 such that A ∈ lim$[ξ] G if

and only if x0 /∈ clξ(adhξ |G|). Equivalently, if G is a J-filter on |$[ξ]| such that
|G|#F , then x0 ∈ clξ(adhξ |G|). Consequently, (2.7) holds, by Lemma 2.2. �

Concerning the behavior of J-Antoine convergences under product, more can
be said than Theorem 2.1 (6).

6Theorems 2.1 and 2.4 are corollaries of more general results of [8]. I give here proofs for the
sake of completeness.
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Theorem 2.4. If J is a composable class of filters, then

(2.8) AJσ × ABaseJθ ≥ AJ(σ × θ).

Proof: It suffices to prove

(2.9) AJσ × BaseJθ ≥ AJ(σ × θ),

because it proves that A commutes with finite products (7) so that applying A to
(2.9) we get (2.8). Let y ∈ limBaseJθ G, x ∈ limAJσ F and h ∈ limBaseJ$[σ×θ]M.

Denote by ω : |(σ × θ)× $[σ × θ]|→ |$| the evaluation map. I need to show that
h(x, y) ∈ lim$ ω

(
(F ×G)×M

)
. Without loss of generality I can assume G andM

to be J-filters. Thus tM is a J-filter and th ∈ lim$[σ][θ]
tM, by the exponential law

(2.1). Let ω1 : |θ × $[σ][θ]|→ |$[σ]| be the evaluation map. This is a continuous
map so that th(y) ∈ lim$[σ]H, where H = ω1(G × tM) is a J-filter. Since

x ∈ limAJσ F , one has th(y)(x) ∈ lim$ ω2(F ×H) = lim$ ω
(
(F ×G)×M

)
, where

ω2 : σ×$[σ]→ $ is the evaluation map. Consequently, h(x, y) ∈ lim$ ω
(
(F ×G)×

M
)
. �

3. Strongly sequential convergences

Using Theorem 2.1 with α = ξ, θ = First ξ and BaseJ = First, in view of (1.7),
I conclude that a convergence ξ is a solution for Problem 0.2 if and only if

(3.1) ξ ≥ Aω First ξ.

I call such a convergence strongly sequential.
Now we are in a position to answer Problem 0.2.

Theorem 3.1. The following are equivalent:

1. ξ is strongly sequential;
2. adhξ H ⊂ clFirst ξ(adhFirst ξ H) for each countably based H such that H =

HadTξ
;

3. ξ × τ is sequential for each first-countable convergence τ ;
4. ξ × τ is sequential for each metrizable atomic topology τ ;
5. ξ × τ is strongly sequential for each quasi-bisequential convergence τ .

A convergence ξ is quasi-bisequential whenever ξ ≥ AFirst ξ. Recall that
a topology ξ is bisequential if there exists a countably based filter H#F such
that x ∈ limξ H whenever x ∈ limξ F (see [6]). This definition can be extended
to convergences via ξ ≥ S First ξ ([3]), where S denotes the reflector on the
category of pseudotopologies defined by G. Choquet in [2] (8). Since Aξ = Sξ

7Apply (2.9) two times with J the class of all filters.
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for each Hausdorff convergence ξ (see for example [1]), quasi-bisequentiality and
bisequentiality coincide for Hausdorff convergences.
Proof: (1) ⇐⇒ (2) follows immediately from Theorem 2.3.
(1) ⇐⇒ (3) ⇐⇒ (4) follows from Theorem 2.1 applied with α = ξ, θ = First ξ

and BaseJ = First.
(5) =⇒ (3) because each strongly sequential convergence is sequential while

each first-countable convergence is quasi-bisequential.
(1) =⇒ (5) follows from Theorem 2.4 applied with J the class of countably

based filters, σ = First ξ and θ = First τ . �

In view of [3, Theorem 5.2], each strongly sequential convergence is a Aω-
quotient (9) image of a first countable convergence. Such quotient maps are
studied and characterized in [4] and [8]. Each countably biquotient map is Aω-
quotient while each Aω-quotient map is quotient. More precisely, the following
characterizations of Aω-quotient arise from a combination of [4, Theorems 11.3
and 11.7].
Corollary 3.2. Let f : ξ → τ be a continuous surjection. Then the following are
equivalent:

1. f is Aω-quotient;

2. if y ∈ limτ F , then F is countably Aω(fξ)-compactoid (10) in Nfξ(y);
3. if y ∈ limτ F , V is a fξ-open set containing y, and S is a countable ξ-cover
of f−V , there exists a finite subfamily P ⊂ S such that the intersection
of all τ -open sets containing

⋃
P∈P f(P ) is an element of F ;

4. f × Idθ is quotient for each first-countable convergence (equivalently each
metrizable atomic topology) θ.

5. f × g is quotient for every Aω-quotient map g with quasi-bisequential
domain (11).

Since each first countable convergence being an almost open image of a Haus-
dorff metrizable topology,

Theorem 3.3. A convergence is strongly sequential if and only if it is a Aω-

quotient image of a Hausdorff metrizable topology.

Notice that JadTξ
= J for each T1-convergence ξ (12), so that a T1 conver-

gence is strongly sequential if adhξ H ⊂ clFirst ξ(adhFirst ξ H) for each countably
based H. Observe also that adhFirst ξ H = adhSeq ξ H for every countably based
filter so that

clFirst ξ(adhFirst ξ H) = clSeq ξ(adhSeq ξ H).

8limSξ F =
T

U∈β(F) limξ U , where β(F) denotes the set of ultrafilters of F .
9That is, a quotient in the category of Aω-convergences.
10In other words, adhAω(fξ)H#Nfξ(y) whenever H is a countably based filter such that

H#F .
11Notice that a Aω-quotient map is quotient. For quotient maps, Nfξ(.) = Nτ (.) and fξ-

open and τ -open sets coincide.
12A convergence is T1 if each point is closed.
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Hence, ξ is strongly sequential if and only if ξ ≥ Aω Seq ξ. In other words, ξ is
strongly sequential if whenever a decreasing sequence of subsets (An) accumulates
at x, the point x belongs to the (idempotent) sequential closure of the set of limit
points of convergent sequences (xn)n such that xn ∈ An.

4. Strong sequentiality and strong Fréchetness

Recall that a topology (or convergence) ξ is strongly Fréchet if for each count-
ably based filter H with x0 ∈ adhξ H there exists a sequence meshing H that
converges to x0. In [10] Y. Tanaka introduced the condition (C) that can be
rephrased as follows.

Condition 4.1 (C). For each countably based filter H, if adhξ H 6= ∅ then
adhSeq ξ H 6= ∅.

Notice that strong sequentiality is weaker than strong Fréchetness and stronger
than Condition (C).
Strong sequentiality appears as an extension of the concept of strong Fréchet-

ness from the class of Fréchet spaces to the whole class of sequential spaces.

Proposition 4.2. A T1 strongly sequential and Fréchet convergence is strongly
Fréchet.

Proof: Let ξ be a T1 strongly sequential and Fréchet convergence. By Theo-
rem 3.1,

(4.1) adhξ H ⊂ clSeq ξ(adhSeq ξ H)

for every countably based filter H. I need to show that adhξ H ⊂ adhSeq ξ H.
Let (Hn) be a decreasing base of H and let x ∈ adhξ H. By (4.1) and since ξ is
T1, there exists on adhSeq ξ H a sequence of distinct terms (xn) that converges
to x. By Fréchetness and the fact that H is countably based, for each n, there
exists a sequence (x(n,k))k that converges to xn and such that x(n,k) ∈ Hn+k.

As ξ is Fréchet and x belongs to the sequential closure of {xn,k : n ∈ ω, k ∈ ω},
there exists a sequence (xnj ,kj

)j such that x ∈ limξ(xnj ,kj
)j ; because ξ is T1, the

sequence (nj + kj)j tends to infinity. Therefore (xnj ,kj
)j is finer than H, hence

x ∈ adhSeq ξ H. �

Consequently, examples of sequential non strongly sequential topologies are
well known. For example the countable fan Sω is Fréchet Hausdorff but not
strongly Fréchet, hence not strongly sequential. By [9, Example 6.6], the product
of two strongly Fréchet topologies, hence of two strongly sequential topologies,
need not be sequential, under 2ℵ0 < 2ℵ1 . On the other hand, a strongly sequen-
tial topology can be of arbitrary large sequential order (between one and ω1).
For example, a convergent free bisequence with its usual topology is a strongly
sequential topology of sequential order 2. Moreover, there are also structural
analogies between strongly sequential and strongly Fréchet spaces. The following
problem is analogous to Problem 0.2.
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Problem 4.3. Characterize topologies (or convergences) ξ such that ξ × τ is
Fréchet for every first-countable topology (convergence) τ .

The structure of its solution (Theorem 4.4 below) is very similar to that of
Problem 0.2 (Theorem 3.1).

Theorem 4.4. The following are equivalent:

1. ξ is strongly Fréchet;
2. adhξ H ⊂ adhFirst ξ H for each countably based H;
3. ξ × τ is Fréchet for each first-countable convergence τ ;
4. ξ × τ is Fréchet for each metrizable atomic topology τ ;
5. ξ × τ is strongly Fréchet for each bisequential convergence τ .

This last theorem is just an extension to convergences of a combination of
well-known results of E. Michael [6, Proposition 4.D.4] and [6, Proposition 4.D.5]
(13). However, Theorem 4.4 can be proved by the same methods as Theorem 3.1.
Moreover, both Theorems 3.1 and 4.4 are corollaries of a single abstract theorem
stated in its general form in [8]. Indeed, S. Dolecki observed in [3] that both
concepts of Fréchetness and strong Fréchetness can be extended from topologies
to convergences via

ξ ≥ P First ξ and ξ ≥ Pω First ξ,

respectively. The reflector Pω is introduced in the same paper [3] and I show in
[8] that Pωξ = i−(Λ[First(Λ[ξ])]).
In view of (1.4), it suffices to apply the mechanism of continuous duality at

work in the proof of Theorem 3.1, in order to prove Theorem 4.4.

5. A characterization of the pairs with sequential product under

a first-countability assumption

Theorem 5.1 answers Problem 0.3 only in the case of first-countable T1 regular
topologies τ . It refines Theorem 0.1 of Tanaka (14).

Theorem 5.1. Let τ be a first-countable regular T1 topology. Then ξ × τ is
sequential if and only if ξ is strongly sequential or τ is locally countably compact.

To prove Theorem 5.1, I follow the method of Y. Tanaka in [10]. In particular
the following lemma is a refinement of [10, Lemma 2.2] obtained by an adaptation
of Tanaka’s proof.

Lemma 5.2. If a sequential convergence ξ is not strongly sequential, then there
exists a countable metrizable atomic topology τ0 such that ξ×τ0 is not sequential.

Proof: If ξ � Aω First ξ then there exists a countably based filter H = HadTξ

such that x0 ∈ adhξ H \ clFirst ξ(adhFirst ξ H). Let (Hn)n∈ω be a decreasing base

13In [6], E. Michael uses the term countably bisequential for strongly Fréchet.
14Recall that in [10] all spaces are supposed to be regular T1 topologies.



152 F.Mynard

of H. By the sequentiality of ξ, for each n, there exists a countable subset Cn of
Hn such that x0 ∈ clξ Cn. Consider the set {x0}

⋃
n∈ω(Cn × {n}) endowed with

the atomic topology τ0 with Nτ0(x0) generated by {
⋃

i≥n(Ci × {i})}n∈ω ∧ (x0).
The convergence τ0 is a countable metrizable atomic topology, and ξ × τ0 is not
sequential. Let A =

⋃
x∈Cn,n∈ω

(
clξ x × (x, n)

)
. Obviously, (x0, x0) ∈ clξ×τ0 A,

but (x0, x0) /∈ clFirst(ξ×τ0)A. Indeed, consider two countably based filters F and

G such that x ∈ limξ F , y ∈ limτ0 G and (F ×G)#A. If y 6= x0, there exists n ∈ ω
and z ∈ Cn such that y = (z, n). This point being isolated in τ0, G is its principal
ultrafilter. From (F ×G)#A, we get x ∈ adhξ z, so that (x, (z, n)) ∈ A. If y = x0,

then F#A−Nτ0(x0). In other words, F#Hadξ
, so that x ∈ adhFirst ξ H. Hence

adhFirst(ξ×τ0)A ⊂ A ∪ (adhFirst ξ H × {x0}). Since x0 /∈ clFirst ξ(adhFirst ξ H), I

conclude that (x0, x0) /∈ clFirst(ξ×τ0)A. �

Proof of Theorem 5.1: The necessity follows from Theorem 3.1 and [7, The-
orem 4.2] mentioned in the introduction.
Assume that ξ×τ is sequential. If τ is not locally countably compact, then it is

easy to check (see [10, Lemma 2.3]) that the metrizable topology τ0 of Lemma 5.2
is homeomorphic to a closed subset of ξ. Thus, in view of Lemma 5.2, ξ is strongly
sequential, because ξ × τ0 is sequential as a closed subspace of ξ × τ . �

To conclude, notice that other results of [10] can be improved on replacing Con-
dition 4.1 by strong sequentiality. For example, compare the following with [10,
Proposition 4.1] (the proofs are completely similar). Denote by ξω the countable
power of a convergence ξ.
Theorem 5.3. If ξω is sequential, then ξ is strongly sequential.
The converse is false under (MA). Indeed, by [11, p. 301], there exists, under

(MA), a strongly Fréchet topology (hence strongly sequential) whose countable
product is not even a k-space.
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