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On n-in-countable bases
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Abstract. Some results concerning spaces with countably weakly uniform bases are gen-
eralized for spaces with n-in-countable ones.
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All spaces in the paper are assumed to be T7. If 7 and A are cardinals, then
one says that a family B of sets is 7-in-A if for every set A of cardinality 7, A C B
holds for no more than A members B € B. 7-in-< A is defined similarly. One
says that a family is 7-in-countable in place of 7-in-w and that a family is 7-in-
finite in place of T-in-< w. A 2-in-finite family is called weakly uniform and a
2-in-countable family is also called countably weakly uniform.

We are going to extend results of paper [6] on spaces with countably weakly
uniform bases to spaces with n-in-countable bases, where n is a natural number.
A few results concern n-in-finite bases.

Lemma 1. Let n > 1 be a natural number. An n-in-countable open family in a
separable space is countable.

ProoF: It is evident. O

Theorem 1. Letn > 1 be a natural number. A regular countably compact space
with an n-in-countable T7-separating open cover is metrizable.

PrOOF: Let X be a regular countably compact space and let B be its n-in-
countable Tj-separating open cover. Denote by £(X) the set of all nonisolated
points of X. It is evident that if + € £(X) then ord(xz,B) < min{|4]| : = is an
accumulation point of A}. Let us consider the set Z = {x € L(X) : ord(z, B) <
w}. Because X is regular countably compact, Z = £(X). Now, by analogy with
the proof of Miscenco’s theorem [3] with using Lemma 1 one can prove that there
exists a countable set Y C Z such that Y = £(X). Hence |[{B € B: BN L(X) #
0}] < w. We can assume that if B € B and BN L(X) = () then B is an one-point
set. Hence B is countable. Therefore X is metrizable. O

Corollary 1 ([1]). Letn > 1 be a natural number. A regular countably compact
space with an n-in-countable base is metrizable.

Later on we will denote by Z(X) the set of all isolated points of a space X.
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Lemma 2. Let n > 1 be a natural number. Let X be a space with an n-in-
countable base B and let |Z(X)| = 7, where 7 is an uncountable cardinal. Then
X has an n-in-countable base B* such that for each x € Z(X), ord(z, B*) < T.

PROOF: Let Z(X) = {z¢ : £ < 7}. Let us define By = {B € B: 29 € B}. Let
n < 7. Assume that B¢ are defined for each £ < 7. Then we define B, = {B € B :
ry € B, B ¢ B¢ under § < n}. Now put B% ={B\{w¢}: B e B¢} foreach{ <7
and B! = U{Bg : & < 7}. It is evident that if A C Z(X) and |A| = n — 1 then
|{B € B! : A C B}| < 7. Repeating this step n — 1 times (of course we assume
n > 2), we obtain a family B("~1) such that B* = BV U{B e B: BNI(X) =
0y U{{z}:x € Z(X)} is a base with all the required properties. O

Lemma 3. Let n > 1 be a natural number. Let X be a space with an n-in-
countable base B and let |Z(X)| < w. Then X has an n-in-countable base B*
such that for each ¢ € Z(X), ord(xz,B*) < w.

ProOF: The statement can be proved just as Lemma 2. (]

Theorem 2. Let n > 1 be a natural number. A regular locally separable space
with an n-in-countable base is metrizable.

PRrROOF: The statement is proved in just the same way as Theorem from [7] with
using above-mentioned Lemmas 1, 2, and 3. Here is a sketch of the proof. By
Lemma 1 the space is locally metrizable. Hence every its n-in-countable base has
a countable order at each nonisolated point. Let us maintain induction on the
cardinality of the set of all isolated points. Let a space X satisfy the assumptions
of Theorem 2, and let |Z(X)| < w. Then with respect to the above remark and by
Lemma 3, X has a point-countable base. Therefore X is divided into a disjoint
family of open metrizable subspaces. Consequently, X is metrizable. Now, let 7
be an uncountable cardinal. Let us assume that the statement of the theorem is
true for each cardinal A < 7. Suppose now that |Z(X)| = 7. We will consider two
cases.

Case 1. 7 14s regular. By Lemmas 1 and 2 there is a base B of X of order
< 71 at each point of X. Without loss of generality we may assume that every
element of the base is separable. For every B* € B define a family £(B*) in
the following way: E(B*) = {B*}, &1(B*) = {B € B: BN B* # 0}, ---,
En(B*) ={BeB:BN(U&n-1) # 0}, etc., E(B*) = J{En(B*) : n € w}. Then
we have |E(B*)| < 7, and |J £(B*) has less than 7 isolated points. It follows that
JE(B™) is metrizable, hence X is metrizable too.

Case 2. 7 is singular. Then there are a cardinal A < 7 and a partition {Ig (&< A}
of the set Z(X) such that [I¢| = 7¢ < 7. Let B be a base of X with the same
properties as in Case 1. Fix an ordinal £ < A. For each point a € I¢ put
So ={B e€B:aec B}. Put Aj) = UU{Sy :|Sa| < 7}. Since A; is an open
subspace of X, which has the set of all isolated points of cardinality less than 7,
it is metrizable. Hence, the space G¢ = {B € B: BNI¢ # 0} = U{An:n < A}
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has a base of order no more than \ at each its point. It follows that the space
G=U{Ge: E <A} =U{B € B: BNI(X) # 0} has a base U of order no
more than A at each its point. Without loss of generality we may assume that
every element of the base is separable. In the same way as in Case 1 it can be
proved that G is metrizable. Because X \ G is contained in an open subspace
of X without isolated points, it is metrizable. Thus, X is the union of two open
locally separable metrizable subspaces. Hence X is metrizable. O

Corollary 2. Let n > 1 be a natural number. A regular space which admits an
n-in-countable cover of open separable metrizable subspaces is metrizable.

Corollary 3. Let n > 1 be a natural number. A regular locally countably
compact space with an n-in-countable base is metrizable.

Corollary 4 ([2]). Let n > 1 be a natural number. A Hausdorff locally compact
space with an n-in-countable base is metrizable.

Lemma 4 (MA + —CH). Let n > 1 be a natural number. If X is a Cech-
complete space with ¢(X) = w, then every open n-in-countable family of X is
countable.

PRrROOF: Under n = 1 this is a result of Shapirovskii [9]. Then the statement is
proved by induction on n. ([

It follows from [8] that the statement of Lemma 4 is false under —=SH even if
n=1.

Theorem 3 (MA + ~CH). Letn > 1 be a natural number. Suppose that X is a
regular space which is locally Cech-complete and locally has the Souslin property.
If X has an n-in-countable base, then X is metrizable.

PrRoOOF: The statement follows from Lemma 4 and Theorem 2. O

Theorem 4. Let n > 1 be a natural number. Every pseudocompact space with
an n-in-finite base is Cech complete first countable.

PROOF: Let X be a pseudocompact space and B be an n-in-finite base for X.
For each B € B choose an open in X set B’ such that B = X N B’, and consider
the family B’ consisting of such sets. We show that the family B’ is n-in-finite
in BX. Let A C X and let |[A] = n. Let S be an infinite countable subfamily
of the family B. Denote by F the set [|S N A. By definition, the cardinality
of F is less than n. Then G = ({B’\ F : B € §} C X \ X. Because X is
pseudocompact, the set G being a Gg-set of SX that is contained in SX \ X is
empty by the well known result of Hewitt [5]. Thus B’ is an n-in-finite family
in 8X. The same arguments show that the family B’ has finite order at each
point of X \ X. Denote by Z the set of all isolated points of X and define
Fpn = {z € BX : ord(z,B") < m}\ Z. Because Z is open in 3X, each Fy, is
a closed subset of 3X. Moreover, X \ X = J{Fm : m € w}. So X is Cech
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complete; therefore, X is a k-space. It is evident that a k-space with an n-in-
finite base is first countable.

O

Corollary 5. Let n > 1 be a natural number. Every submetacompact pseudo-
compact space with an n-in-finite base is metrizable.

Theorem 5. Let n > 2 be a natural number. Every space X with an n-in-finite
base has cardinality at most exp,,_1(L(X)), where L(X) is the Lindeldf degree
of X.

PROOF: Let B be an n-in-finite base of X. Put 7 = L(X). We will use the

theorem of Erdés and Rado: (exp,_1(7))" — (77)® ([4]). Let us assume that

|X| > exp,,_1(7). Consider a mapping P : [X]|" — w defined by the rule: A —
{B € B: A C B}|. There exists a homogeneous with respect to P set H of
cardinality 71 . It is easy to show that the set H is a closed discrete subset of X,
a contradiction. (]

Let us note that there exists an example of a Hausdorff Lindel6f space with a
weakly uniform base which is not first countable ([6]).
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