Groups, transversals, and loops

TUVAL FOGUEL

Abstract. A family of loops is studied, which arises with its binary operation in a natural way from some transversals possessing a "normality condition".

Keywords: loops, groups, transversals Classification: Primary 20N05: Secondary 20D99

§1. Introduction

The study of loops leads in a natural way to the study of transversals of subgroups, for example the works of: Karzel, Kepka, Kiechle, Kinyon, Niemenmaa, Phillips, Sabinin, Ungar, and et al. [6], [10], [11], [13], [15], [16]. Loops have also played an important role in the study of groups such as in Conway's celebrated construction of the Fischer-Griess monster group using Parker's Moufang loop of order 2^{13} . This led to Griess's construction of binary code loops by a double cover elementary abelian 2-group ([3], [8]). From the above one can see that there is a strong connection between the study of group and loops.

Sabinin has shown that every left loop arises with its binary operation in a natural way from some special transversal of a subgroup in certain groups ([16]). In this paper I will look at a family of loops which arises with its binary operation in a natural way from some transversals which possesses a "normality condition". Subgroups and subsets of groups with normality conditions such as subnormality, seminormality, and etc. have interested me for a long time ([4], [5]).

\S **2.** AP-loop as transversals of groups

Definition 2.1. A groupoid ([1]) is a nonempty set with a binary operation. An automorphism of the groupoid (S, \odot) is a bijection of S that respects the binary operation \odot in S. The set of all automorphisms of (S, \odot) forms a group denoted by $Aut(S, \odot)$.

Definition 2.2. A *left loop* is a groupoid (S, \odot) with an identity element in which the equation $a \odot x = b$ possesses a unique solution for the unknown x. (S, \odot) is a *loop* if $y \odot a = b$ also possesses a unique solution.

Definition 2.3. Given a left loop P and an ordered pair $(a, b) \in P \times P$ we get a bijection $\delta_{a,b} : P \to P$ defined by $a \odot (b \odot x) = (a \odot b) \odot \delta_{a,b} x$ for any $x \in P$. Here $\delta_{a,b}$ is a correction to associativity called a *left inner mapping* ([1]). Let $AS_{\delta}(P)$ be the group generated by all the bijections $\delta_{a,b}$ (Note that $(a \odot b) \odot x = a \odot (b \odot \delta_{a,b}^{-1} x)$).

Note. It is shown in [16] that if L_a for $a \in P$ is the left translation by a, then $\delta_{a,b} = L_{(a \odot b)}^{-1} L_a L_b$ where the product is in the permutation group L_P generated by all left translations.

Definition 2.4. We will call a left loop (or a loop) a *left* A_l -loop (or A_l -loop respectively) if for all $(a, b) \in P \times P$, $\delta_{a,b} \in Aut(P, \odot)$.

Definition 2.5. A groupoid (P, \odot) has the *left inverse property* if for each $a \in P$, there is a unique $a^{-1} \in P$ such that $a^{-1} \odot (a \odot b) = b$ for all b in P.

Definition 2.6. A left A_l -loop P (or an A_l -loop) is a *left AP-loop* (or *AP-loop* respectively) if it possesses the left inverse property.

Definitions of two well known AP-loops are presented below:

Definition 2.7 $(A_l$ -Bol-loop = Gyrogroup [15], [17]). A groupoid (G, \odot) is an A_l -Bol-loop if its binary operation satisfies the following axioms. In G there is at least one element, 1, called a left identity, satisfying

(G1) $1 \odot a = a$ Left Identity for all $a \in G$. There is an element $1 \in G$ satisfying axiom (G1) such that for each a in G there is an x in G, called a left inverse of a, satisfying

(G2) $x \odot a = 1$. Left Inverse

Moreover, for any $a, b, z \in G$ there exists a unique element $\delta_{a,b} z \in G$ such that

(G3)
$$a \odot (b \odot z) = (a \odot b) \odot \delta_{a,b} z.$$

If $\delta_{a,b}$ denotes the map $\delta_{a,b}: G \to G$ given by $z \mapsto \delta_{a,b} z$ then

(G4)
$$\delta_{a,b} \in Aut(G, \odot),$$

(G5)
$$\delta_{a,b} = \delta_{a \odot b,b}$$
.

Definition 2.8 (*Gyrocommutative Gyrogroup* = K-loop = Bruck-loop [9], [15], [17]). The A_l -Bol-loop (G, \oplus) is a *Bruck loop* if for all $a, b \in G$,

(G6) $a \odot b = \delta_{a,b}(b \odot a).$

In case P is a left A_l -loop, since $\delta_{a,b} \in Aut(P, \odot)$, Sabinin's [16] "semidirect product" becomes:

Definition 2.9. Let $P = (P, \odot)$ be a left A_l -loop, and let $AS_{\delta}(P) \leq H \leq Aut(P, \odot)$. The semidirect product group

Left Loop Property

is the set of ordered pairs (x, X), where $x \in P$ and $X \in H$, with the binary operation given by

$$(x,X)(y,Y) = (x \odot Xy, \delta_{x,Xy}XY).$$

Below is a corollary to Sabinin's Theorem 2 [16] about "semidirect products":

Corollary 2.10. Let (P, \odot) be a left A_l -loop, and let $AS_{\delta}(P) \leq H \leq Aut(P, \odot)$. Then $P \rtimes H$ is a group.

Definition 2.11. A set *B* is a transversal in a group *G* (all transversals in this article are left transversals) of a subgroup *H* of *G* if every $g \in G$ can be written uniquely as g = bh where $b \in B$ and $h \in H$. Let $b_1, b_2 \in B$ be any two elements of *B*, and let

$$b_1b_2 = (b_1 \odot b_2)h(b_1, b_2)$$

be the unique decomposition of the element $b_1b_2 \in G$, where $b_1 \odot b_2 \in B$ and $h(b_1, b_2) \in H$, determining (i) a binary operation, \odot , in B, called the *loop or* transversal operation of B induced by G, and (ii) a map $h: B \times B \to H$, called the transversal map. The element $h(b_1, b_2) \in H$ is called the element of H determined by the two elements b_1 and b_2 of its transversal B in G. A transversal groupoid (B, \odot) of H in G is a groupoid formed by a transversal B of H in G with its transversal operation \odot .

Definition 2.12. A transversal groupoid (B, \odot) of a subgroup H in a group G is an A_l -transversal of H in G if

- (i) $1_G \in B$, 1_G being the identity element of G;
- (ii) B is normalized by $H, H \subseteq N_G(B)$, that is, $hBh^{-1} \subseteq B$ for all $h \in H$.

Note. If an A_l -transversal is also a subgroup, then it is a normal subgroup. So we see that an A_l -transversal possesses a "normality condition".

Theorem 2.13. Let (B, \odot) be an A_l -transversal groupoid of a subgroup H in a group G. Then, for any $a, b, x \in B$, $(a \odot b) \odot \delta_{a,b} x = a \odot (b \odot x)$ and $\delta_{a,b} \in Aut(B, \odot)$.

PROOF: Let $a, b \in B$ be any two elements of B, and let $ab = (a \odot b)h(a, b)$ be the unique decomposition of the element $ab \in G$, where $a \odot b \in B$ and $h(a, b) \in H$. Let $\delta_{a,b}x = x^{h(a,b)} = h(a,b)x(h(a,b))^{-1}$ for all $x \in B$.

For all $a, b, c \in B$ we have in G,

$$(2.1) (ab)c = a(bc).$$

Employing the uniqueness of the decomposition for both sides of (2.1) we have

(2.2)

$$(ab)c = (a \odot b)h(a,b)c$$

$$= (a \odot b)\delta_{a,b}ch(a,b)$$

$$= ((a \odot b) \odot \delta_{a,b}c)h(a \odot b, \delta_{a,b}c)h(a,b)$$

on one hand, and

(2.3)
$$a(bc) = a(b \odot c)h(b,c)$$
$$= (a \odot (b \odot c))h(a, b \odot c)h(b,c)$$

on the other hand. It follows from (2.1)–(2.3) and from the uniqueness of the decomposition that

$$(a \odot b) \odot \delta_{a,b} c = a \odot (b \odot c).$$

We now have to show that

$$(x \odot y)^{h(a,b)} = x^{h(a,b)} \odot y^{h(a,b)}$$

for all $a, b, x, y \in B$.

More generally, however, we will verify the desired identity for any $k \in H$ regardless of whether or not k possesses the form k = h(a, b). We will thus show that

$$(x \odot y)^k = x^k \odot y^k$$

for any $k \in H$. Clearly, we have in G

$$(xy)^k = x^k y^k.$$

Employing the unique decomposition G = BH, we have

$$(xy)^k = ((x \odot y)h(x,y))^k = (x \odot y)^k h(x,y)^k$$

on one hand, and

$$x^k y^k = (x^k \odot y^k) h(x^k, y^k)$$

on the other hand. It follows from the above and from the uniqueness of the decomposition G = BH that

$$(x \odot y)^k = x^k \odot y^k,$$

which completes the proof.

Theorem 2.14. An A_l -transversal B of a subgroup H in G that possesses the left inverse property is a left AP-loop under the loop operation.

PROOF: We have to show that (B, \odot) satisfies axioms (G1)–(G4) of Definition 2.7 and is a left loop. Axioms (G3) and (G4) are verified in Theorem 2.13, and we get (G2) from the left inverse property.

Given $b \in B$ we get

$$b = 1b = (1 \odot b)h(1, b)$$

Hence (G1) is verified. Given $a \odot x = b$ we have a unique solution $a^{-1} \odot b$. \Box Note. If B is an A_l -transversal with $B = B^{-1}$, then B is an left AP-loop.

Definition 2.15. An A_l -transversal B with $B = B^{-1}$ is called an AP-transversal = gyrotransversal ([6]).

Example 2.16. Let $P \subset S_n$ where P consists of the identity permutation and all 2-cycles of the form (1,i) for i = 2, ..., n. Let H be the stabilizer of 1 in S_n . Then P is a transversal of H, and is, in fact, an AP-transversal, but P is not a loop.

Note. $P = P^{-1}$ and if $a \in P$ and $h \in H$, then $hah^{-1} \in P$.

\S **3. A family of** *AP***-loops**

In the literature there are many examples of A_l -Bol-loops and K-loops which are all necessarily AP-loops. In this section we will look at a family of AP-loops that are not A_l -Bol-loops (and thus not K-loops).

Definition 3.1 (Diagonal transversals). Let K be a group and let $G = K \rtimes Inn(K)$ be the semidirect product group of K and Inn(K), where Inn(K) is the inner automorphism group of K whose generic element α_k denotes conjugation by $k \in K$ (i.e. $\alpha_k x = kxk^{-1}$). Then, the *diagonal transversal* D generated by K (in G) is the subset of G given by

$$D = \{(k, \alpha_k) | k \in K\} \subset G$$

which is a transversal of Inn(K) in G. Any element $(k, \alpha_k) \in D$ is determined by a corresponding element $k \in K$. We therefore use the notation

$$D(k) = (k, \alpha_k)$$

to denote the elements of D.

Theorem 3.2. A diagonal transversal with its transversal operation is an *AP*-transversal.

PROOF: ([6, Theorem 3.2]).

Definition 3.3 (Associated Left Gyrogroups) [6]. The associated left gyrogroup of a group (K, \cdot) from Theorem 3.2 is the left A_l -loop (K, \odot) . The operation \odot is given in terms of the group operation \cdot by $a \odot b = ab^a = a^2ba^{-1}$ for all $a, b \in K$. This corresponds to the transversal operation of the diagonal transversal.

Theorem 3.4. If K is a nilpotent group, then (K, \odot) is an AP-loop.

PROOF: It will suffice to show that the equation $x \odot a = b$ has a unique solution for x. It is true when (K, \cdot) is abelian, and an induction on the class (divide out the center) does the rest.

Theorem 3.5. The associated left gyrogroup (K, \odot) of a group (K, \cdot) is a group if and only if (K, \cdot) is nilpotent of class 2.

PROOF: ([6, Theorem 3.6]).

Definition 3.6. Given $a, b \in E$ let [a, b] = [a, b] and inductively [a, a+1, b] = [[a, b], b]. A group E is n-Engel group ([14]) [a, a, b] = 1 for all $a, b \in E$.

Theorem 3.7. Let (K, \odot) be the associated left gyrogroup of a group (K, \cdot) . Then (K, \odot) is a A_l -Bol-loop = gyrogroup if and only if (K, \cdot) is central by a 2-Engel group.

PROOF: ([6, Theorem 3.7]).

Hence, for any nilpotent group (K, \cdot) of class ≥ 5 , the associated groupoid (K, \odot) is an *AP*-loop but not A_l -Bol-loop, since it is nilpotent but not central by a 2-Engel group.

§4. A multiplication table and a look at normal subgroups of loops

Example 4.1 (A A_l -Bol-loop multiplication table). The lowest order of a nilpotent group of class 3 which is not of class 2 is 16. Using the software package MAGMA ([2]) we found three non-isomorphic nilpotent groups of order 16 which are of class 3 but are not of class 2. Their associated left gyrogroup generate three non-K-loops (i.e., non-Bruck-loops) A_l -Bol-loops of order 16, denoted by K_{16} , L_{16} , and M_{16} . The multiplication table of K_{16} , is presented in Table I, where the elements $k_i \in K_{16}$, $i = 1, 2, \ldots, 16$, are denoted by their subscripts.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	2	1	4	3	6	5	8	7	10	9	12	11	14	13	16	15
3	3	4	2	1	7	8	6	5	12	11	9	10	16	15	13	14
4	4	3	1	2	8	7	5	6	11	12	10	9	15	16	14	13
$5 \mid$	5	6	7	8	4	3	1	2	16	15	13	14	10	9	12	11
6	6	5	8	7	3	4	2	1	15	16	14	13	9	10	11	12
7	7	8	6	5	1	2	3	4	14	13	16	15	11	12	10	9
8	8	7	5	6	2	1	4	3	13	14	15	16	12	11	9	10
9	9	10	11	12	13	14	15	16	1	2	3	4	5	6	7	8
10	10	9	12	11	14	13	16	15	2	1	4	3	6	5	8	7
11	11	12	10	9	15	16	14	13	4	3	1	2	8	7	5	6
12	12	11	9	10	16	15	13	14	3	4	2	1	7	8	6	5
$13 \mid$	13	14	15	16	12	11	9	10	7	8	6	5	1	2	3	4
14	14	13	16	15	11	12	10	9	8	7	5	6	2	1	4	3
$15 \mid$	15	16	14	13	9	10	11	12	5	6	7	8	4	3	1	2
16	16	15	13	14	10	9	12	11	6	5	8	$\overline{7}$	3	4	2	1

Table I	The A_l -Bol-loop	K_{16})
---------	---------------------	------------

 K_{16} has only one non-identity left inner mapping, A, whose transformation table is given in Table II.

Table II	(The	automorphism	Δ	of	K_{1c}	١
Table II	(1ne)	uutomorphism	А	ΟJ	n_{16})

$1 \rightarrow 1$	$5 \rightarrow 5$	$9 \rightarrow 10$	$13 \rightarrow 14$
$2 \rightarrow 2$	$6 \rightarrow 6$	$10 \rightarrow 9$	$14 \rightarrow 13$
$3 \rightarrow 3$	7 ightarrow 7	$11 \rightarrow 12$	$15 \rightarrow 16$
$4 \rightarrow 4$	$8 \rightarrow 8$	$12 \rightarrow 11$	$16 \rightarrow 15$

The left inner mapping $\delta_{a,b}$ generated by any $a, b \in K_{16}$ is either A or the identity automorphism denoted by 1. The left inner mapping table for $\delta_{a,b}$ is presented in Table III.

Table III	(The	left	inner	mapping	$\delta_{a,b}$	of	$K_{16})$	
-----------	------	------	-------	---------	----------------	----	-----------	--

$\delta \mid$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
_	—	—	_	_	_	—	_	—	_	—	—	—	—	—	—	—
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$5 \mid$	1	1	1	1	1	1	1	1	A	A	A	A	A	A	A	A
6	1	1	1	1	1	1	1	1	A	A	A	A	A	A	A	A
7	1	1	1	1	1	1	1	1	A	A	A	A	A	A	A	A
8	1	1	1	1	1	1	1	1	A	A	A	A	A	A	A	A
9	1	1	1	1	A	A	A	A	1	1	1	1	A	A	A	A
10	1	1	1	1	A	A	A	A	1	1	1	1	A	A	A	A
11	1	1	1	1	A	A	A	A	1	1	1	1	A	A	A	A
12	1	1	1	1	A	A	A	A	1	1	1	1	A	A	A	A
13	1	1	1	1	A	A	A	A	A	A	A	A	1	1	1	1
14	1	1	1	1	A	A	A	A	A	A	A	A	1	1	1	1
15	1	1	1	1	A	A	A	A	A	A	A	A	1	1	1	1
16	1	1	1	1	A	A	A	A	A	A	A	A	1	1	1	1

Definition 4.2. A subloop X of a loop P is a normal subgroup ([7]) of P if it is a normal subloop which is in the middle nucleus i.e.

- (i) $\delta_{a,x} = 1$ for all $x \in X$ and $a \in P$;
- (ii) $\delta_{a,b}(X) \subseteq X$ for all $a, b \in P$;
- (iii) $a \odot X = X \odot a$ for all $a \in P$.

Note. If X is a normal subgroup of a loop P, then X is a group with group operation given by the restriction of \odot to X.

Note. Since a normal subgroup X of P is a normal subloop, P/X forms a factor loop.

Theorem 4.5. If (P, \odot) is a A_l -Bol-loop, then P has a normal subgroup Ξ such that P/Ξ is a Bruck-loop.

PROOF: ([7, Theorem 4.11]).

Example 4.6. The 4×4 upper left corner of Table I forms a multiplication table of a group, H. The group H is a normal subgroup of K_{16} . The quotient K_{16}/H turns out to be an abelian group. Hence, we have in hand an example of an extension of a group by another group that gives a non-associative structure (that is, the A_l -Bol-loop K_{16}). It is an extension which is far from being trivial since H and K_{16}/H are groups while K_{16} is a non-Bruck-loop A_l -Bol-loop.

§5. Open questions

Question 5.1. Are there any nontrivial *AP*-transversals that are loops in finite simple groups (The answer is positive in the infinite case [12], but I suspect that it is negative in the finite case)?

Question 5.2. For which groups is the associated left gyrogroup an *AP*-loop?

References

- [1] Bruck R.H., A Survey of Binary Systems, Springer-Verlag, 1966.
- [2] Cannon J., Playoust C., An introduction to MAGMA, University of Sydney, Sydney, 1993.
- [3] Conway J.H., A simple construction for the Fischer-Griess monster group, Invent. Math. 79 (1985), no. 3, 513–540.
- [4] Foguel T., Groups with all cyclic subgroups conjugate-permutable groups, J. Group Theory 2 (1999), no. 1, 47–51.
- [5] Foguel T., Conjugate-permutable subgroups, J. Algebra 191 (1997), no. 1, 235–239.
- [6] Foguel T., Ungar A.A., Gyrogroups and the decomposition of groups into twisted subgroups and subgroups, Pacific J. Math., to appear.
- [7] Foguel T., Ungar A.A., Involutory decomposition of groups into twisted subgroups and subgroups, J. Group Theory 3 (2000), no. 1, 27–46.
- [8] Griess R.L., Jr., Code loops, J. Algebra 100 (1986), no. 1, 224–234.
- Karzel H., Raum-Zeit-Welt und hyperbolische Geometrie, Beiträge zur Geometrie und Algebra 29 (1994), Technische Universität München, Mathematisches Institut, Munich.
- [10] Kepka T., Niemenmaa M., On multiplication groups of loops, J. Algebra 135 (1990), 112– 122.
- [11] Kepka T., Phillips J.D., Connected transversals to subnormal subgroups, Comment. Math. Univ. Carolinae 38 (1997), 223–230.
- [12] Kiechle H., K-loops from classical groups over ordered fields, J. Geom. 61 (1998), no. 1–2, 105–127.
- [13] Kinyon M.K., Jones O., Loops and semidirect products, Comm. Algebra, submitted.
- [14] Robinson D.J.S., A Course in the Theory of Groups, Springer, New York, 1995.
- [15] Sabinin L.V., Sabinina L.L., Sbitneva L.V., On the notion of gyrogroup, Aequationes Math. 56 (1998), 11–17.

- [16] Sabinin L.V., On the equivalence of categories of loop and homogeneous spaces, Soviet Math. Dokl. 13 (1972), no. 4, 970–974.
- [17] Ungar A.A., Axiomatic approach to the nonassociative group of relativistic velocities, Found. Phys. Lett. 2 (1989), 199–203.

Department of Mathematics, North Dakota State University, Fargo, ND 58105, USA

E-mail: foguel@prairie.Nodak.edu

(Received September 7, 1999, revised January 10, 2000)