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Loop characters

Kenneth W. Johnson

Abstract. A survey of the basic results of loop characters is given on the lines of the
treatment of the author and J.D.H. Smith for characters of quasigroups, including some
recent deveploments. One of the successes of the theory has been its suggestive influence
on the theory of association schemes, group representations and the theory of the group
determinant, and selected results arising are described. A section is devoted to an
explanation of how the tool of loop characters has not yet been as startlingly successful
as that of the early theory of group characters. This may be because in the loop case
more is needed than characters and some suggestions are put forward in this direction.
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1. Introduction

In a series of papers [18]–[22] J.D.H. Smith and the present author have set out
a theory of (combinatorial) characters of a finite quasigroup Q which in the case
where Q is a group coincides with the usual character theory (see also [24]). The
theory contains many of the features of group characters, for example row and
column orthogonality, but there are also considerable differences. The character
values need not be algebraic integers and whereas in the case of finite groups in
characteristic zero the theory of representation by matrices, the module theory
and the character theory essentially coincide there are three separate theories
for quasigroups (see for example [28]). This leads to the necessity for different
techniques, since a major tool to construct group characters is to take traces of
matrix representations.
The object of this survey is to take a new look at the character theory when

Q is a loop. The results in [18]–[22] will be discussed with some hindsight and
an account of recent developments will be given. Whereas the introduction of
group characters spurred a rapid development of their applications to group theory
culminating in Frobenius’ proof of the existence of the kernel named after him
and Burnside’s pαqβ theorem, it has not yet been possible to see such a fruitful
application of character theory to the theory of loops. I will try to point out
reasons for this. On the other hand, the work has been useful in other directions.
It has stimulated and suggested results on association schemes and combinatorics.
It has given insight into some of the questions on group characters posed by
Brauer in [5], and it has led to the investigation in a modern context of the group
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determinant which provided the motivation for Frobenius to define characters of
non-commutative groups.
The history of group representation theory has been remarkable for the un-

expected directions the research has taken (see for example [11] and [25]). The
extension of the theory to quasigroups and loops may be seen to conform to this
pattern.
Summaries of quasigroup character theory appear in [28] and [11], Section 4.

Here I will refer to [11] to avoid repetition, but I will sometimes give an updated
version where appropriate. I will point out specific areas in which the CFQ
work has produced new results (and areas of research). I will also point out
some instances where methods which have been successful for groups run into
difficulties for loops.
In Section 2 loop characters are described and some illustrative examples are

given. A summary of their properties is given in Section 3, together with an
outline of the methods which can be used to construct loop character tables.
Some of the applications of the theory as well as work in related areas which has
arisen out of the theory is given in Section 4 and in Section 5 an attempt is made
to point out why it has been difficult to provide applications of a similar nature
to the many applications of group characters. Suggestions as to where the work
can lead in the future are given in Section 6.

2. Loop characters

I refer to [1] or [7] for the background on association schemes. Let Q be a loop. Let
the mapping group M(Q) of Q be the permutation group on the set Q generated
by the maps {L(q), R(q)}, q ∈ Q where L(q)(x) = qx and R(q)x = xq. The inner
mapping group I(Q) is the stabiliser of e in M(Q). The orbits of I(Q) are the
conjugacy classes C1 = {e}, C2, . . . , Ck. Let

C̄i =
∑

q∈Ci

q.

The set B = {C̄i} generates a commutative, associative subalgebra A of the loop
algebraCQ and the “change of basis” matrix between B and the basis of primitive
idempotents is the “P-matrix” of an association scheme arising naturally from the
class algebra. A renormalisation of this matrix gives the character table of Q. The
important point is that (M(Q), I(Q)) forms a Gelfand pair , which means that a
(commutative) association scheme is defined on the set Q by means of the orbits
Γi of M(Q) acting on Q×Q by

σ(q1, q2) = (σ(q1), σ(q2))

for σ ∈M(Q). The entries in the P-matrix of the scheme are the eigenvalues of the
incidence matrices Ai defined by Ai(q1, q2) = 1 if (q1, q2) ∈ Γi and Ai(q1, q2) = 0
otherwise. In the quasigroup case the Γi are the classes, and for loops there is a
1 : 1 correspondence between the Γi and the Ci given by Ci = {q : (e, q) ∈ Γi}.



Loop characters 273

Example. Let Q be the simple Moufang loop of order 120.
The P-matrix of the corresponding association scheme is

1 63 56
1 −9 8
1 3 −4

and the character table is

1 1 1√
35 −

√

5/7
√

5/7√
81 2/

√

(21) −
√

3/7

The renormalisation between the two matrices is as follows. The entry in the
(i, j)th position of the character table is

√
f i/nj times the corresponding entry

of the P-matrix, where nj is the size of the jth conjugacy class of Q and fi is
the degree of the corresponding irreducible subconstituent of the permutation
representation of M(Q) acting on Q.

Further examples.

There is a commutative loop of order 6 with the weak inverse property, whose
unbordered multiplication table is the following latin square.

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 4 3
6 5 2 1 3 4

It has a normal subloop of order 2. Its character table is

1 1 1 1
1 1 ω ω2

1 1 ω2 ω√
3 −

√
3 0 0

where ω = (−1 +
√
3i)/2.

The character table of the smallest Moufang loop (of order 12) is

1 1 1 1 1
1 1 1 -1 -1
1 1 -1 1 -1
1 1 -1 -1 1

2
√
2 −

√
2 0 0 0

More examples are given in [18]–[22] and in [13].
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3. Properties of loop characters and methods of calculation

Let the (i, j)th entry in the character table of the loop Q be χi(j). We refer to χi

as the ith basic character and χi(j) as its value on the jth class. A class function
on Q is a function from Q to C which is constant on each conjugacy class. The
basic characters form a basis for the set of class functions.
The character table determines the following information.
(1) The set of normal subloops. The kernel of a basic character χ is the union

of the classes Ci for which χ(i) = χ(e). A subloop P of a loop Q is normal if and
only if P is the intersection of the kernels of a finite set of characters.
(2) The centre (the union of singleton classes).
(3) The upper and lower central series.
Row and column orthogonality. As in the group case, we have the following.

Theorem 3.1.
∑

q∈Q

χi(q)χj(q) = δi,j |Q|

r
∑

i=1

χi(k)χi(m) = δk,m|Q|/|Ck|.

If Q and P are groups and if f : Q → P is a homomorphism from Q onto P
and φ is an irreducible (i.e. basic) character of P it follows from the fact that φ is
associated to a matrix representation that χ = fφ (composition) is an irreducible
character of Q. The analogous statement remains true for loop characters, but a
different proof is needed. A linear character of a loop Q is defined to be a basic
character φ such that φ(e) = 1. Again, as in the group case a character is linear
if and only if it arises from a character of an abelian group by composition with
a homomorphism, and again a new proof is required.
A major divergence of the loop character theory is that the entries in the

character table are no longer algebraic integers, as in the group case, although
the P-matrix entries are algebraic integers. The order of the classes and the
degree of the characters are integers dividing the order of a group G. In the loop
case, it is well known that the order of a class need not divide the order of the
loop and as may be seen from the examples in the previous section the degree of
a character χ (= χ(1)) need not be an integer.

Induction and Frobenius reciprocity.

The formula for induction is simpler in the quasigroup setting. A class of a
quasigroup is an orbit Γi of M(Q) acting on Q × Q (see above). Let Q be a
loop with subloop P . Let the classes of P (regarded as subsets of P × P ) be
{∆1, . . . ,∆r}. Suppose that φ is a class function on P . Then the induced class
function φQ is defined by

φQ
P (Cj)/|Q×Q| = φ(Cj ∩H ×H)/|H ×H |.



Loop characters 275

In the above φ(C) =
∑

q∈C φ(q) for any subset C of Q, and φ(q) = φ(j) where
q ∈ Cj .

The following hold:

(a) Transitivity of induction. Let H be a subloop of P .

(φP
H )

Q
P = φ

Q
H .

(b) Frobenius reciprocity. As for group characters define the inner product
(φ, ψ) of class functions φ and ψ by

(φ, ψ)Q =
∑

q∈Q

φ(q)ψ(q)∗

where ∗ denotes the complex conjugate. Let φ be a class function on P and ψ
be a class function on Q. The restriction ψP of ψ to P is defined in the obvious
manner. Then

(φ, ψP )P = (φ
Q
P
, ψ)Q.

At this point there is a divergence from group characters. If χ is a basic char-
acter of Q, χP is a linear combination of basic characters of P but the coefficients

need not be integers. Similarly, if ψ is a basic character of P ψ
Q
P need not be a

linear combination of positive integral multiples of basic characters of Q. This
means that one must be much more careful in using induction to deduce the ex-
istence of basic characters. Another major technique in group character theory
also fails to generalise. If φ and ψ are class functions the product φψ is defined
by

φψ(q) = φ(q)ψ(q).

In the group case φψ is always a sum of irreducible characters with positive
integral coefficients. For loop characters this is no longer true. For a loop Q the
it coefficient ring is defined to be the ring over Z generated by (χiχj , χk). This
ring seems to be of interest and several conjectures about it are given in [13].
There is the following analogue of the theorem of Artin for group characters.

A set of subloops {Pi, i = 1, . . .N} is defined to be protrusive if for each conjugacy
class Ci there exists a j such that Pj ∩Ci 6= ∅. For groups an obvious protrusive
set is the set of all cyclic subgroups, and this generalises to the set of singly
generated subloops of a loop (although this is no longer the case for quasigroups,
see [19]).

Theorem 3.2. Let {Pi, i = 1, . . .N} be a protrusive set of subgroups of Q.
A basic character χ of Q satisfies

χi =
∑

j

bjψ
Q
Pj

where ψ is a basic character of Pj and the bj are algebraic integers.

It is readily seen that Artin’s theorem is the special case where the protrusive
set is as in the above example.
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Methods of calculation.

As with group characters, a variety of different methods has been used to
calculate loop character tables. Below are some of the methods which have been
applied.

(1) A direct calculation of the eigenvalues of the adjacency matrices. This is
effective only in small cases.

(2) The calculation of the structure constants of the class algebra. The struc-

ture constants {ak
ij}, which are non-zero integers, are defined by

C̄iC̄j =
∑

ak
ijC̄k.

A matrix representation of the class algebra can be obtained by representing C̄i

by the matrix whose (j, k)th entry is ak
ij and the P-matrix entries are again the

eigenvalues. This method is similar to that by which Frobenius calculated the
character table of PSL(2, p) ([9]).

(3) If Q has a homomorphic image whose character table is known, a portion
of the character table of Q may be calculated by using the composition with the
homomorphism as described above.

(4) Under certain circumstances induction may be used to obtain basic char-
acters, although care must be taken in the case where the coefficient ring is not
integral.

(5) Fusion. It often happens that the character table of a quasigroup Q1 is a
“fusion” of the table of a quasigroup Q2 of the same order. In [20] a condition
that a table has a fusion is obtained, the magic rectangle condition. This method
may be applied most easily when Q1 is a loop with conjugacy classes which are
unions of conjugacy classes of a group Q2. The character table of Q1 may then be
obtained from that of Q2, which can be calculated by the much easier methods of
group theory. Fusion is also used to obtain the character tables of various families
of loops arising from extensions of groups discussed in [13].

Finally, it may be pointed out that the character table is an invariant of isotopy,
so that it is in fact an invariant of the underlying 3-web corresponding to a loop.
The connection between characters and 3-webs remains to be explored.

4. Applications of the ideas

(1) The characters of loops have provided a set of examples which have moti-
vated the discovery of new techniques and definitions in the theory of association
schemes. As mentioned above, the crucial result is that for any loop one obtains
a Gelfand pair.

(a) Several authors had voiced the need for a definition of an induced character
for an association scheme. The definition given in [19] carries over to arbitrary
association scheme characters and the details are set out in the note [23].
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(b) Fusion and the magic rectangle condition. The results in [20] also carry
over to arbitrary association schemes and have motivated further work (see for
example [29]).

(c) The calculation of the character tables of the family of simple Moufang
loops (the Paige loops) carried out in the thesis of Song began a series of papers
where the character tables of the association schemes of various families of classical
groups acting on subgroups. See [2], [3] and [4].

(2) Group character theory. In [5] R. Brauer suggested a series of problems
on group characters, pointing out that although the theory is successful there are
many aspects of it which are not well understood. Loop character tables provide
examples of tables which satisfy all the obvious criteria that group tables satisfy,
but which do not arise from groups. This gives an explanation as to why it has
been difficult to find a set of conditions on a character table which ensure that it
comes from a group. Other light on these questions has been shed by the work
on group determinants described below.

(3) Loop determinants and latin square determinants. Since many loops have
the same character table, it is natural to search for a finer invariant. In the group
case the initial object of the study which produced group characters was the group
determinant, which is precisely such an object, since a group is determined by its
determinant ([8]). A loop determinant may be defined as follows. If Q is a loop of
order n assign variables xq , q ∈ Q to the elements. Define the loop matrix XQ as

a matrix whose rows and columns are indexed by the elements of Q, whose (p, q)th

entry is {xpρ(q)} (where ρ(q) is defined by qρ(q) = e). One may think of XQ as

being obtained from the latin square representing the unbordered multiplication
table of the loop by rearranging the columns so that e appears in the diagonal
and replacing q by xq for all q in Q. The loop determinant ΘQ is det(XQ).

A study of latin square determinants (which may be thought of as loop de-
terminants) was begun in [10] and [12]. As in the group case there is a 1 : 1
correspondence between factors of the determinant and basic characters, but the
factors may not be irreducible. Define the equivalence relation R on the set of
loops of a given order to be the smallest relation including isotopy and trans-
position (Q1 is the transpose of Q2 if the loop multiplication table of Q1 is the
transpose of that of Q2). R-equivalent loops necessarily have equivalent determi-
nants, and loops of order at most 7 with equivalent determinants areR equivalent,
but a calculation for the latin squares of order 8 in [15] has shown that of the
842,227 R classes all except 37 have inequivalent determinants, the exceptional
37 classes having only 12 distinct determinants. One might conjecture that the
loop determinant “almost” determines the loop.

One of the important consequences of this work is that it has stimulated a
new look at the group determinant. It would take this discussion too far from its
roots to describe this work in any detail and the reader is referred to the recent
survey [14]. As mentioned above, the work has led to further understanding of
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the difficulty of solving some of the Brauer problems for group characters and
interesting applications of the theory of norm-type forms on algebras have been
made. Mention may also be made of the weak Cayley table of a group G which
is defined in [16] to be the table with rows and columns indexed by the elements

of G whose (g, h)th entry is the conjugacy class containing gh. This is a finer
invariant than the character table, and the information in it is equivalent to that
in the irreducible 2-characters of G.

(4) The idea of a sharp character for a group arises from permutation groups.
A permutation group is sharply transitive if and only if the permutation character
is sharp. This definition was generalised by Cameron and Kiyota in [6] to arbitrary
group characters, and results have been obtained by several authors on the kinds
of groups which have a sharp character with a given set of values. A basic result is
the following generalisation of a well-known result of Burnside: if χ is any faithful
character of a group and L = {l1, l2, . . . , lr} is the set of values taken on by χ on
non-identity elements, and if

fχ(x) =

r
∏

i=1

(x − li)

then
fχ(χ) = mρ

where ρ is the regular character and m is an integer. If m = 1 then χ is sharp.
This result has a counterpart for loop characters, and in [13] examples are given
of sharp characters for loops. Independent work of Strunkov pointed out that
one may obtain a dual of the above result for classes, and in [17] it is shown that
Strunkov’s result holds for any association scheme. A consequence for loops is that
if r is the number of distinct values in the column of the P-matrix corresponding
to a “faithful” class Ci of a loop Q then every element of Q may be expressed as
a word in the elements of Ci of length at most r, where a class Ci is faithful if no
other entry in the ith column of the P-matrix is equal to the first entry. This work
has also led to interesting conjectures related to the Burnside ring of a group.

5. Limitations of the theory

The following are some of the reasons behind the difficulty of applying character
theory to arbitrary loops.

(1) The trivial character table (for a loop of order n) is

1 1√
(n− 1) −1/√(n− 1)

“Almost all” loops have the trivial table. However many special families do
not, for example Moufang loops and any loop which is not simple cannot have
the trivial table.
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(2) It is difficult to relate properties such as associativity, Moufang, Bol, or
validity of Lagrange’s theorem to the character table. For any loop there are
usually many loops with the same table (for example the loops of order 8 discussed
in [10] all have the same character table), and although there has not been much
research in this direction one suspects that such loops can have widely differing
algebraic properties. Note that associativity can be determined from the loop
determinant.
(3) One application of characters in group theory has been in the construction

of sporadic simple groups. A possible character table is constructed for a simple
group and the group is then constructed (as in the case of the Monster). It has
proved to be difficult to use the same strategy for the construction of simple loops
with a given property. For example, the calculation of the character tables of
the Paige loops was carried out by working with Gelfand pairs (G,H) with G a
classical group. Such a pair exists where [G : H ] = 36 and if a loop transversal to
H in G exists the corresponding character table is that of a simple loop. An un-
successful attempt was made in collaboration with Smith to construct such a loop
transversal with the extra conditions which would produce a Bol loop with this
table (although it remains possible that such a transversal can be constructed).
(4) The multiplicative structure of the “character ring” and induced characters

are not easy to control.
(5) There is as yet no analogue of the Burnside ring (i.e. the ring of permu-

tation representations of a group) for a loop. However in [27] a candidate for a
permutation representation of a quasigroup is offered.

6. Suggestions for future work

The following suggestions may be regarded as being very tentative, given the lack
of predictability of group representation theory.
(1) Loop determinants. As was pointed out in the previous section, the loop

determinant appears to be a reasonably good invariant for an isotopy class of
loops. Analogues of the k-characters discussed in [14] do exist for loops but
the new results and perspectives in group theory have diverted effort away from
understanding the loop case. The weak Cayley table of a loop would also seem
to be an interesting object of study.
(2) Lagrange’s theorem. The connection between cosets and permutation rep-

resentations may give a method to prove that a loop (probably with severely
restricted properties) satisfies Lagrange’s theorem. The hope is that character
induction, the methods in [27] and other methods above may be applied to show
that Moufang loops of small order satisfy the conclusion of the theorem.

(3) The orbits of M(Q) acting on Q(r) (rth Cartesian product) and super-
schemes. How much more loop properties can these orbits determine, and is there

always an r so that the orbits on Q(r) and Q(r+1) contain the same information?

I conclude with the following problems.
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Problem 1. Characterise loops which have the same character table as a group.
A non-associative loop cannot have the same character table as an abelian

group, so the smallest character table to consider is that of the symmetric
group S3. There is one loop (necessarily of order 6) with the same table, which
is weak inverse, generalised Moufang and generalised Bol. The loops of order 8
discussed in [12] all have the same character table as the two non-abelian groups
of that order.

Problem 2. Characterise the loops which have the same character table as a
Moufang loop.

Problem 3. Characterise the loops for which the coefficient ring is Z.
The two Moufang loops whose character tables are given in Section 2 do not

have integral coefficient rings. There are examples in [13] of families which have
integral coefficient ring.
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