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0. There might be different opinions on the date of birth of the theory of smooth
quasigroups. But nobody would deny that the pioneering work of Mal’cev
[A.I. Mal’cev 55] was a milestone of exceptional importance in the area. Thus
we regard this very work as a starting point of smooth quasigroups and loops
theory. In this survey we concentrate our efforts only on main ideological achieve-
ments; it would be not productive and, moreover, impossible to survey the whole
scope of published papers in the field.
Instead we present a large (but not comprehensive) bibliography on the subject.
Near 1955, after remarkable results of the algebraic theory of quasigroups, the

spiritual state of World Mathematical Mind reached a proper strength to create
something new. A very natural idea to generalize the Lie groups theory in a
non-associative way obtained the shape and force and appeared in the paper
[A.I. Mal’cev 55]. This initiated attempts to construct the foundation of smooth
quasigroups and loops in different parts of the world (Russia, Japan, Germany,
Central Europe).
Some attempts of geometric nature were related to web geometry. We will not

be concerned with this matter, which is treated in the article of M. Akivis and
V. Goldberg. Here we note only that web geometry gives a useful instrument to
study isotopically invariant properties of quasigroups. The study of properties
which are not isotopically invariant needs different approaches.
From [L.V. Sabinin 98a] one may see how, by means of the construction of

antiproduct, web theory is reduced to standard considerations of loop theory.
Among those who influenced the development of the theory of smooth quasi-

groups, I would especially mention the following personalities (in alphabetical
order): A.S. Fedenko, A.N. Grishkov, M. Kikkawa, O. Kowalski, E.N. Kuz’min,
A.I. Ledger, O. Loos, A.I. Mal’cev, P. Nagy, L.V. Sabinin, A.A. Sagle, K. Stram-
bach.
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1. In the paper [A.I. Mal’cev 55] a local diassociative analytic loop Q = 〈Q, · , ε〉
was studied. Diassociativity means that any two elements generate a subgroup.
Since the multiplication in a loop is a binary operation and the loop is diassocia-
tive, one may write the analogue of the Campbell-Hausdorff series, which depends
only on one skew-symmetric bilinear operation (multiplication ×) in the tangent
space V = TεQ, at ε ∈ Q. Thus, at least locally, a diassociative loopQ = 〈Q, · , ε〉
can be restored by means of its tangent algebra 〈V,+, 0V ,×〉. This algebra is a
binary-Lie algebra, that is, any two of its elements generate a subalgebra which
is a Lie algebra. Any binary-Lie algebra generates, by means of the Campbell-
Hausdorff formula, a diassociative local loop. Thus we get a diassociative smooth
loops — binary-Lie algebras theory generalizing the Lie groups — Lie algebras
theory. Later, Gainov [A.T. Gainov 57] described a binary Lie algebra V by the
identities:

(1)

{

J(ξ, η, ξ × η) = 0, ξ × ξ = 0, ξ, η ∈ V,

J(ξ, η, ζ) = ξ × (η × ζ) + ζ × (ξ × η) + η × (ζ × ξ).

In the same paper of A.I. Mal’cev a smooth Moufang loop was considered, as well.
A Moufang loop can be defined as a loop 〈Q, · , ε〉 with the identities

(2)
Lx ◦ Ly ◦ Lx = Lx·(y·x), Lxz

def
= x · z

(left Bol identity),

(3)
Rx ◦ Ry ◦ Rx = R(x·y)·x, Rxz

def
= z · x

(right Bol identity).

Being diassociative, a smooth Moufang loop can be infinitesimally described by a
skew-symmetric algebra with identities. Mal’cev called it a Moufang-Lie algebra.
Now it is called a Mal’cev algebra. Its defining identities are:

(4) ξ × ξ = 0 , J(ξ, τ, , ξ × η) = J(ξ, τ, η)× ξ , ξ, η, τ ∈ V.

At that time the question whether any Mal’cev algebra uniquely defines a smooth
Moufang loop or not was open. This question was answered in positive by Kuz’min
[E.N. Kuz’min 70, 71]. Thus the infinitesimal theory for smooth Moufang loops
— Mal’cev algebras has been constructed in the full analogy with the Lie groups
— Lie algebras theory. Kuz’min classified, also, all simple Mal’cev algebras over
R. With a few rather interesting exceptions, these turned out to be Lie algebras
[E.N. Kuz’min 68]. Earlier the same, in fact, was done by Sagle [A.A. Sagle
62a], who intensively studied Mal’cev algebras [A.A. Sagle 61, 62a, b]. Later some
results on global smooth Moufang loops were obtained [F.S. Kerdman 79].
In the light of the above, we may speak of a Mal’cev school in the smooth

loops theory (Mal’cev-Gainov-Kuz’min and others), the approach of which was
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purely algebraic, without any concern for the geometry. Much later Grishkov
[A.N. Grishkov 86a, b] finalized, to a certain extent, the above theory. He con-
structed the structure theory of binary-Lie algebras. In particular, he showed
that any simple binary-Lie algebra (over R) is a Mal’cev algebra.
There are still some open problems in the field: is the group generated by

left (right) translations Lx, Lxy = x · y , (Rx, Rxy = y · x) of a diassociative
C3-smooth loop a Lie group? Note that this is true for Moufang loops.

2. The other sources of the smooth quasigroup theory had their backgrounds in
differential geometry. O. Loos [O. Loos 69] retold the theory of symmetric spaces
(see, for example, [S. Helgason 62, 78]) in the language of smooth quasigroups,
although he did not use the term ‘quasigroup’ [O. Loos 69]. It was a remarkable
breakthrough, since earlier no good geometric examples of smooth quasigroups
had been discovered. It was followed by the notion of generalized symmetric spaces
[A.J. Ledger 67], [A.J. Ledger, M. Obata 68], [A.S. Fedenko 73, 77], [O. Kowalski
74, 80] which has been well studied. Again, despite the geometric approach, these
results have a smooth quasigroups nature. In the language of smooth quasigroups,
a generalized symmetric space is simply a smooth (partial or global) quasigroup
〈Q, · 〉 with the identities

x · (x · y) = y (key identity),(5)

x · (y · z) = (x · y) · (x · z) (left distributive identity).(6)

3. Meanwhile, a very important fact was discovered by Kikkawa [M. Kikkawa 64].
By means of parallel translations of geodesic arcs along geodesic arcs in an affinely
connected manifold (M,∇), he constructed so-called geodesic loops of an affinely
connected manifold. More precisely, M may be considered to have the binary
operations (local or global)

(7) x ·
a

y
def
= Expx τa

x Exp
−1
a y,

where τa
x means the parallel translation from a to x along the geodesic arc

⌣
ax and

Expa is the exponential map at a ∈ M . In this way we get a loop 〈M, ·
a
, a〉 with

neutral element a ∈ M . This construction justified the role of smooth quasigroups
and loops in differential geometry. But at that time the fundamental question,
when the system of smooth loops on a manifold is a system of geodesic loops for
some affinely connected space, was still open.

4. Later, under the influence of [O. Loos 69], Kikkawa introduced the notion of
homogeneous Lie loops and developed their theory. Actually, such loops are left
A-loops , that is, loops with the identity

(8)







ℓ(a , b) ◦ Lx ◦ [ℓ(a , b)]−1 = Lℓ (a , b) x ,

L c z
def
= c · z , ℓ(a, b)

def
= (La·b)

−1 ◦ La ◦ Lb .
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This means that ℓ(a, b) is an automorphism of the considered loop. He introduced
in this case the canonical reductive affine connection and the proper infinitesimal
object, a triple Lie algebra [K. Yamaguti 58a, b] (a binary-ternary linear algebra
with identities). See [M. Kikkawa 72, 73, 74, 75a, b, c, 84 a, b, 85, 91].

5. In 1972 Sabinin [L.V. Sabinin 72a, b, c] established the fundamental relations
between homogeneous spaces and left loops. As it is known, any left homogeneous
space G/H with a fixed cross section Q defines a left loop on itself by projecting
on Q the group product of two elements from Q along a left coset:

(9) ∀ q1, q2 ∈ Q, q1 ∗ q2
def
= πQ(q1 · q2)

(this is due to [R. Baer 39, 40]). But there is a converse construction discovered
by Sabinin [L.V. Sabinin 72a, b, c]: by means of a left loop and its transassociant ,
one may uniquely construct a left homogeneous space (semidirect product of a
loop by its transassociant) and its cross-section such that the left loop induced on
it by projecting along the left cosets is isomorphic to the original left loop.
This result was generalized to left quasigroups, as well.
Note that despite the fact that the above results are purely algebraic, they

are most important in the smooth setting (after obvious localization). Thus the
Baer-Sabinin construction was established.

6. In [L.V. Sabinin, L.B. Sharma 76] the notion of Bol loop was generalized to
so-called left half Bol loops and corresponding examples were given. This concept
has played an important role in current research. See [L.V. Sabinin, L.V. Sbitneva
94], [L.V. Sabinin, Yu.A. Selivanov 94]. For the smooth case, see [L.V. Sabinin,
C. Castillo 99].

7. In [L.V. Sabinin 77], the fundamental concepts of odule and odular struc-
ture were introduced and applied to affinely connected manifolds. The notion
of geodesic loop (Kikkawa) was enriched by the introduction of the canonical
unary operations (which resulted in the notion of geodesic odules and diodules).
In this way a purely algebraic description of an affinely connected space as an
odular (diodular) universal algebra with the geoodular identities was obtained.
Such an algebraic description is impossible in the language of loops only. In
this scheme an affinely connected manifold (M,∇) is a smooth universal algebra
〈M, L, N, (ωt)t∈R〉 with ternary operations

(10) L(x, a, y) = La
xy = x ·

a
y, N(x, a, y) = Na

xy = x+
a

y

and binary operations

(11) ωt(a, x) = tax
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such that, for any fixed a ∈ M , 〈M, ·
a
, a , (ta)t∈R〉 is a smooth local left odule,

which means that 〈M, ·
a
, a〉 is a loop with two-sided neutral a ∈ M and

(t+ u)ax = tax ·
a

uax (monoassociativity),(12)

ta(uax) = (tu)ax (pseudoassociativity),(13)

1ax = x (unitarity).(14)

2) 〈M,+
a
, a, (ta)t∈R〉 is a local vector space.

3) The identities

Lu z x
t z x ◦ Lz

t z x = Lz
u z x (the first geoodular identity),(15)

Lz
x ◦ t z = t x ◦ Lz

x (the second geoodular identity),(16)

Lz
x (y +

z
w) = Lz

x y +
x

Lz
x w , (the third geoodular identity).(17)

are valid.
Such an algebra is called a geodiodular algebra. A geodiodular algebra has a

natural affine connection defined by

(18)
∇X a

Y =

{

d

dt
( [ (La

g (t) )∗, a ]
−1 Yg (t) )

}

t=0
,

g (0) = a , ġ (0) = Xa ,

Y being a vector field, La
cq = L(c, a, q) (see (10)).

The initial geodiodular structure may be restored by means of its natural con-
nection ∇ as

L (x, a, y) = x ·
a

y = Expx τa
x Exp

−1
a y ,(19)

ω t (a , z) = t a z = Expa t Exp−1a z ,(20)

N(x, a, y) = x +
a

y = Expa ( Exp
−1
a x + Exp−1a y) .(21)

Later, an algebraic study of affine connections was presented in the Ph.D. Disser-
tation of our student Afanasiev [A.J. Afanasiev 84].
In addition, some important classes of affinely connected spaces (reductive,

symmetric, etc.) were described by algebraic identities. Thus the identities

(22)

{

Lb
a L(x, y, z) = L (Lb

a x, Lb
a y, Lb

a z) ,

Lb
a ωt(x, y) = ωt (L

b
a x, Lb

a y)
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describe reductive spaces , and the identities

(23)

{

(−1)a L(x, y, z) = L((−1)ax, (−1)ay, (−1)az),

(−1)a ωt(x, y) = ωt((−1)ax, (−1)ay).

describe symmetric spaces . On this matter, see [L.V. Sabinin 81, 91b, 99a, b].
In the Dr.Ph. Dissertation [H.M. Karanda 72], the fundamental fact that a

geodesic loop of symmetric space is a left Bol loop was disclosed. Later, it was
shown [L.V. Sabinin 81] that a locally symmetric space is nothing but a C3-smooth
left Bol-Bruck loop, that is a left Bol loop with the left Bruck identity

(24) (x · y) · (x · y) = x · (y · (y · x)).

Equivalently, one can replace (24) by the automorphic inverse identity

(x · y)−1 = x−1 · y−1.

It is interesting that in 1977 we did not know the results of Kikkawa
[M. Kikkawa 64].
The above results have introduced a new ideology into geometry which allows

one to treat an affinely connected space as a smooth algebraic system (nonlinear
geometric algebra and nonassociative geometry).

8. Despite the work of A. Mal’cev and Kikkawa, it still was valuable to explore
certain classes of smooth loops close to Lie groups. Since a geodesic odule of any
symmetric space turned out to be a Bol loop, it was significant to study smooth
Bol loops.
The infinitesimal theory of C3-smooth left (right) Bol loops was developed by

L. Sabinin and his student P. Miheev [L.V. Sabinin, P.O. Miheev 82b, 84, 85a, b],
[P.O. Miheev 86a]. For a contemporary treatment, see [L.V. Sabinin 99b].
In the above works the proper infinitesimal object, a binary-ternary linear

algebra with the identities

(25)

{

(η; ξ, ξ) = 0, (ξ; η, ζ) + (η; ζ, ξ) + (ζ; ξ, η) = 0,

((ξ; ν, τ); η, ζ) + (ξ; (η; ν, τ), ζ) + (ξ; η, (ζ; ν, τ)) = ((ξ; η, ζ); ν, τ)

(triple Lie algebra) and

(26)
ξ · ξ = 0 ,

((τ · ζ); ξ, η) = (τ ; ξ, η) · ζ + τ · (ζ; ξ, η) + ((ξ · η); τ, ζ) + (τ · ζ) · (ξ · η) ,

was introduced. Such an object is called a Bol algebra.
If 〈Q, ·, ε〉 is a C3-smooth left Bol loop and

(27) Aλ(x) =

[

∂(x · y)α

∂yλ

]

y=ε

∂

∂xα
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are so-called left fundamental vector fields then

(28)
(ξ · η) = [Aλ, Aµ](ε)ξ

ληµ,

(ξ; η, ζ) = [Aλ, [Aµ, Aν ]](ε)ξ
ληµζν

define the tangent Bol algebra on V = Tε(Q).
A Bol algebra uniquely defines a local left Bol loop and vice versa, in full

analogy with the Lie algebras–Lie groups theory. It is interesting that initially
this theory was obtained by means of differential-geometric machinery, but later
(see [L.V. Sabinin 91b, 99b]), it was elaborated in a more algebraic way.

9. The first comprehensive account of the geometric smooth quasigroups and
loops theory was given in [L.V. Sabinin 81]. For a contemporary treatment of the
whole theory, see [L.V. Sabinin 99b].

10. Along with the above, geometric studies by means of the smooth quasigroup
and loop approach took place. Generalized symmetric spaces were treated in the
quasigroup language [L.V. Sbitneva 79, 82a, 82c, 84a, b]. This resulted in the
concept of a perfect s-space, which was well studied in algebraic and geometric
ways.

11. In 1988 the idea to create a general infinitesimal theory of smooth loops was
completely realized in [L.V. Sabinin 88b]. The infinitesimal object in this theory
is much more complicated (a so-called hyperalgebra).

Thus, let 〈Q, · , ε〉 be a local Ck-smooth (k ≥ 3) loop, let

Ai
j (x) =

[

∂ (x · y )i

∂yj

]

y=ε

be its left fundamental vector fields (see (27)), and let Exp be the exponential
map.
We recall that, by definition,

(29)
d ( Exp tq )i

dt
= Ai

j ( Exp tq ) qj , Exp (0) = ε ,

and adjoin to the loop its canonical operations

(30) t x = Exp tExp−1 x , x+ y = Exp (Exp−1 x+ Exp−1 y ).

Let us also consider l̃ (a, b) = [ ℓ (a, b) ]∗, ε and C i
j k(x) defined by the unique

representation

(31) [Aj , Ak ] (x) = C i
j k (x)Ai (x) .
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We introduce the functions

(32)
ci
jk (q) = C i

j k ( Exp q ) ,

l p
m (v , w) = l̃ p

m ( Exp v , Expw ) ; q, v, w ∈ T ε (Q) .

(Note that in the normal coordinates Exp q = q .)
Let us define on T ε (Q) = V the operations

(33)
ν (v, w) = l p

m (v, w)wm ( ∂ p ) ε ,

d (q, w) = ci
jk (q) q

jw k ( ∂ i ) ε .

The tangent vector space T ε (Q) = V equipped with these operations is called the
ν-hyperalgebra tangent to the loop 〈Q, · , ε 〉. Such an algebra possesses properties
which we collect in the following definition.

Definition. Let V be a vector space (over an arbitrary field K ), dimV = n,
d (q, w) be a binary operation on V admitting a representation in an arbitrary
basis e1, . . . , en of the form

d (q, v) = dk
ij (q) q

i vj ek

and such that d (q, q) = 0. Then we say that V is a hyperalgebra.
If, additionally, a binary operation ν (v, w) is given on V , and ν (v, w) admits

the representation in an arbitrary base e1, . . . , en of the form

ν (q, w) = νi
j (q, w)w

j ei ,

where ν (0, w) = w, νi
j (v, 0)wj = wi, then we say that V is a ν-hyperalgebra

(with multioperator ν).

Proposition. Any Cr-smooth (r ≥ 1) ν-hyperalgebra determines uniquely a
local Cr-smooth loop 〈Q, · , ε 〉 such that its tangent ν-hyperalgebra is isomor-
phic to the initial ν-hyperalgebra.
Morphisms of smooth loops induce morphisms of the corresponding ν-hyper-

algebras and vice versa.

Although the operations ν and d are uniquely defined, the above indicated
representations for them are not unique. If ν and d are analytic then we can
obtain a countable system of multilinear operations (with identities) which is
equivalent to the original ν-hyperalgebra (under some conditions of convergence).
We call such a system of multilinear operations also a ν-hyperalgebra.

A Ck-smooth (k ≥ 2) loop is right monoalternative, that is, (x · ty) · uy =
x · (t+ u)y (t, u ∈ R), if and only if for its tangent ν-hyperalgebra ν (v, w) = w.

In different applications one needs derivatives of ν and d . For example, it is
the case for geometric odules, where one needs first derivatives of ν. This leads
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us to a modification of the concept of ν-hyperalgebra (equivalent to the initial
one). In such a way an F -hyperalgebra can be constructed.
Let us note, finally, where, in the context of ν-hyperalgebra, Lie groups appear.

A C3-smooth loop is a Lie group if d (v, w) is bilinear and satisfies the identi-
ties of a Lie algebra, and ν (v, w) = w (i.e., the loop is right monoalternative).
Additional identities in a loop influence very much the structure of its tangent
ν-hyperalgebra (the identity of associativity demonstrates such a case).

Comment. Roughly speaking, in the analytic case one needs a countable set of
multilinear operations instead of one binary operation as in the case of Lie groups
— Lie algebras, or binary and ternary operations as in the case of Bol loops —
Bol algebras. Of course, some (rather weak) identities should be added.

The complete treatment of the infinitesimal theory of smooth loops may be
found in [L.V. Sabinin 91b, 99b]. In this connection we note that the earlier
treatment of such a theory [L.V. Sabinin, P.O. Miheev 86, 87, 90] (presented in
a differential-geometric way) is now only of historical interest due to the unsatis-
factory definition of hyperalgebra there.

12. The concept of odular structure (L.V. Sabinin) has given a rise, to a gener-
alization of G-spaces [H. Buseman 55]. Thus in [O.A. Matveev 86, 87] the notion
of geodetic space was introduced. This is a smooth manifold with a system of
smooth unary operations (local or global) and characteristic identities

(34)
ux(txy) = (ut)xy, 1xy = y, txy = (1− t)yx

(t, u ∈ R, x, y ∈ M).

We note here that any affinely connected space is a geodetic space. In the smooth
case any geodetic space can be equipped with a unique affine connection of zero
torsion with the same geodesics {txy}t∈R. For that it is enough to take the tangent
affine connection to the loopuscular structure L(x, z, y) = Lz

x y = (2)z(1/2)x y,

(35)
∇X a

Y =

{

d

dt
( [ (La

g (t) )∗, a ]
−1 Yg (t) )

}

t=0
,

g (0) = a , ġ (0) = Xa ,

Y being a vector field.
O.A. Matveev developed the algebraic theory of geodesic maps for affinely

connected spaces (or, equivalently, for smooth geoodular spaces).

13. The problem of when a smooth odule is a geodesic odule for some affine
connection was solved in [L.V. Sabinin 87]. It was proved that a smooth odule
〈Q, ·, ε, (t)t∈R〉 is geodesic for some affine connection if and only if it is geometric,
that is if the identity of geometricity

(36)
ℓ(x, y) ty = t ℓ(x, y) y ,

ℓ(x, y) = (Lx·y)
−1 ◦ Lx ◦ Ly (t ∈ R, x, y ∈ Q),
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is valid. The above affine connection is not unique and the arbitrariness of its
choice was described as well. On this matter, see also [L.V. Sabinin 95b].
In this setting, the concept of holonomial odule was introduced [L.V. Sabinin

87] as an odule 〈Q, ·, ε (t)t∈R〉 with an additional ternary operation h(a, b;x) and
the system of identities

h (a , b ; t x) = t h (a , b ;x) (homogeneity identity),(37)

h (a , a · b ; t b) = ℓ (a , b) t b (joint identity),(38)

h (c · ta , c · ua ;h (c , c · ta ;x)) = h(c , c · ua ;x) (h-identity),(39)

h (ε , q ;x) = x (ε-identity).(40)

This structure uniquely describes the geoodular space by

(41) x ·
a

y = x · h (a , x ; a\y) , t a y = a · t (a\y) (a\y = (La)
−1y).

This notion is equivalent to the notion of geoodular structure in the sense that
it allows one to concentrate all information about a geoodular structure (locally)
into one fixed geodesic odule [L.V. Sabinin 87, 91b, 99b]. One may also say that
the above construction is, in particular, an algebraic version of the equations of
E. Cartan in polar coordinates for an affine connection.

14. A delicate analysis of Bol loops and left A-loops has given rise to the notion
of hyporeductive and pseudoreductive loops , as well as to the notion of hyporeduc-
tive homogeneous space (a generalization of the reductive space [P.K. Rashevski
50, 51, 52], [S. Kobayashi, K. Nomizu 63, 69]). The proper infinitesimal the-
ory has been constructed, see [L.V. Sabinin 90b, 90c, 90d, 91a, 99b]. Later a
differential-geometric treatment of the above was given [I.A. Nourou 92]. On
some generalizations, see [N.A. Gluhova 91].

15. The very interesting problem of describing spaces of constant curvature (and,
more generally, projectively flat spaces) in a purely algebraic way was solved in
[L.V. Sabinin, O.A. Matveev, S.S. Yantranova 86], [L.V. Sabinin, S.S. Yantranova
84], [S.S. Yantranova 89]. It turns out that a geodesic diodule Q of such a space
is a left Bol-Bruck loop with the pseudolinear identity

(42)
x · y = α(x, y)x + β(x, y)y,

x, y ∈ Q; α(x, y), β(x, y) ∈ R.

This result was also generalized to symmetric spaces of index 1.

16. Meanwhile, analyzing the quasigroup structure of generalized symmetric
spaces, L.V. Sabinin and L.L. Sabinina discovered the remarkable transsymmetric
spaces [L.V. Sabinin, L.L. Sabinina 90, 91]. In the quasigroup language, these are
simply smooth left quasigroups satisfying the left F -identity

(43) x · (y · z) = (x · y) · (Fx · z) (F : Q → Q)
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with the property of correctness: there exist (ρFx)
−1, where ρz x

def
= x · z (not

everywhere defined right division).
The comprehensive theory of transsymmetric spaces in the language of smooth

left F -quasigroups was developed in [L.L. Sabinina 92]. See, also, [L.L. Sabinina
93, 94, 95], [L.V. Sabinin, L.L. Sabinina 95]. Perfect transsymmetric spaces were
introduced and studied in [L.V. Sabinin, L.L. Sabinina, L.V. Sbitneva 99].

17. Some first steps to solve the generalized fifth problem of Hilbert for loops
were undertaken in [L.V. Sabinin, L.L. Sabinina, R. Jimenez 97]. In particular, it
would be interesting to know, when a topological left Bol loop is analytic?

18. At this time the problem of constructing a theory of smooth loop actions
(which would be helpful in applications to physics) is very significant. Instead of
a group 〈Q, ·, ε〉 action,

a ∈ Q 7→ (fa :M → M), fa ◦ fb = fa·b, fε = id,

one may try, for example,

(44) a ∈ Q 7→ (fa :M → M), fafbx = f
a

x

· b
x, fε = id, a, b,∈ Q,

where {〈Q,
x
· , ε〉}x∈Q is a family of loops. There is some preliminary non-rigorous

treatment of the matter in [I.A. Batalin 81]. As to Bol loops actions , the work
[T. Nono 61] may give some hint.

19. Finally we would like to indicate some results on applications of smooth quasi-
groups and loops. See [M.V. Karasev, V.P. Maslov 91] (Nonlinear Poisson brack-
ets.), [P. Kuusk, J. Ord, E. Paal 94, 95] (General relativity), [J. Lohmus, E. Paal,
L. Sorgsepp 94] (Survey on non-associative methods in physics), [A.I. Nesterov 89,
90, 97] (Non-associative methods in physics), [E.P. Osipov 89] (Anomalies in field
theory), [E. Paal 88, 89] (Moufang symmetries in physics), [L.V. Sabinin, P.O. Mi-
heev 93] (Special relativity), [L.V. Sabinin, A.I. Nesterov 97a] (Thomas preces-
sion), [L.V. Sabinin, A.I. Nesterov 97b] (Generalized coherent states), [A. Un-
gar 90, 94, 97] (Special relativity), [D.V. Yuriev 87, 92] (Chiral anomalies; Non-
commutative geometry), [M. Bangoura 94] (Poisson brackets in mechanics).
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