Bol loop actions

LARISSA SBITNEVA

Abstract. The notions of left Bol and Bol-Bruck actions are introduced. A purely algebraic analogue of a Nono family (Lie triple family), the so called Sabinin-Nono family, is given. It is shown that any Sabinin-Nono family is a left Bol-Bruck action.

Finally it is proved that any local Nono family is a local left Bol-Bruck action. On general matters see [L.V. Sabinin 91, 99].

Keywords: Bol loop action, Lie triple family, Nono family Classification: 20N05

In this paper we show that any Lie triple family (C^3 -smooth Nono family, for short) [Nono 61] is a (local) Bol action. The notion of Bol action is due to L. Sabinin and is formulated in the following way:

1. Definition. Let $Q = \langle Q, \cdot, \varepsilon \rangle$ be a left Bol loop and $\{f_a : M \to M\}_{a \in Q}$ be a family of maps. We say that this family is a *left Bol loop action* (action of the left Bol loop Q) if $a \mapsto f_a$ is injective and

(1)
$$f_a \circ f_b \circ f_a = f_{a \cdot (b \cdot a)}, \quad f_{\varepsilon} = \mathrm{id}.$$

Analogously, one can define a *partial left Bol loop* action.

The notion of a Bol loop action is rather natural since the left translations L_a $(L_a b = a \cdot b)$ of a left Bol loop satisfy (1), $L_a \circ L_b \circ L_a = L_{a \cdot (b \cdot a)}$.

Our next purpose is to algebraize, according to L. Sabinin, the notion of Nono family.

2. Definition. We say that a family $\{f_a : M \to M\}_{a \in Q}$ (*Q* being a set with a selected point $\varepsilon \in Q$) is a *Sabinin-Nono family* if $a \mapsto f_a$ is injective and

(2)
$$f_a \circ f_b \circ f_a = f_{q(a,b)}, \ f_{\varepsilon} = \mathrm{id},$$

where $q_a : b \mapsto q(a, b), g : a \mapsto q(a, \varepsilon)$ are invertible.

Analogously one can define a partial Sabinin-Nono family.

3. Definition. A left Bol loop, which satisfies the left Bruck identity

(3)
$$(a \cdot b)^2 = a \cdot (b^2 \cdot a)$$

is called a *left Bol-Bruck loop*.

L. Sbitneva

4. Proposition. Any Sabinin-Nono family is a left Bol-Bruck loop action.

Proof: By (2)

$$(f_a \circ f_b \circ f_a) \circ f_c \circ (f_a \circ f_b \circ f_a) = f_a \circ (f_b \circ (f_a \circ f_c \circ f_a) \circ f_b) \circ f_a$$

implies $f_{[q_{(ab)}c]} = f_{(q_aq_bq_ac)}$, and, since $a \mapsto f_a$ is injective, $q_{(q_ab)}c = (q_aq_bq_ac)$. Thus

(4)
$$(q_a \circ q_b \circ q_a) = q_{(q_a b)}$$

Let us introduce

(5)
$$L_a = g^{-1} \circ q_a \circ g, \quad a * b \stackrel{\text{def}}{=} L_a b.$$

It is easily verified that $\langle Q, *, \varepsilon \rangle$ is a loop (because, due to (2), $q_{\varepsilon} = \text{id}$ which implies $g(\varepsilon) = \varepsilon$).

Further, due to (4), (5),

(6)
$$L_a \circ L_b \circ L_a = L_{g(a*g^{-1}b)}.$$

Since at $b = \varepsilon$ (6) gives $L_a \circ L_a = L_{q(a)}$, we have $L_a L_a \varepsilon = L_{q(a)} \varepsilon$, or,

(7)
$$a^2 = a * a = g(a).$$

Thus (7) and (6) give

(8)
$$L_a \circ L_{b^2} \circ L_a = L_{(a*b)^2}$$

Applying both parts of (8) to ε we get

(9)
$$a * (b^2 * a) = (a * b)^2,$$

that is, the left Bruck property.

Substituting from (9) to (8) and changing b^2 by c, which is correct due to the invertibility of $g: a \mapsto a^2$ (see (2), (7)), we get

$$L_a \circ L_c \circ L_a = L_{a*(c*a)},$$

that is, the left Bol property.

As a result, $\langle Q, *, \varepsilon \rangle$ is a left Bol-Bruck left loop with two-sided neutral ε . But it is known [L.V. Sabinin 99] that a left Bol loop with two-sided neutral possesses the right division. Thus $\langle Q, *, \varepsilon \rangle$ is a left Bol-Bruck (two-sided) loop.

Further, by (5)

(10)
$$q(a,b) = (a * g^{-1}b)^2 = a * (b * a)$$

and, due to (2),

 $f_a \circ f_b \circ f_a = f_{a*(b*a)}.$

This proves the theorem.

406

5. Now we are going to consider a local Nono family and to show that it is a Sabinin-Nono (partial) family. First of all we recall the definition [Nono 61].

6. Definition. A family $\{f_a : M \to M\}_{a \in Q}$ of local transformations, defined for $a \in Q$ near fixed $\varepsilon \in Q$ (Q being a set), is called a C^3 -smooth Nono family (Lie triple family) if $a \mapsto f_a$ is injective,

(11)
$$f_{\varepsilon} = \mathrm{id}, \quad f_a \circ f_b \circ f_a = f_{q(a,b)}$$

(if defined) and $(a, b) \mapsto q(a, b)$ is C^3 -smooth.

7. Remark. C^3 -smoothness is needed for the complete infinitesimal theory.

8. Proposition. Any local Nono family is a partial Sabinin-Nono family.

PROOF: We should prove that $q_a: b \mapsto q(a, b)$ and $g: a \mapsto q(a, \varepsilon)$ are locally invertible. For this we use the characteristic differential equation of a local Nono action [Nono 61]:

(12)
$$-P_{\alpha}^{j}(x)\frac{\partial(bx)^{i}}{\partial x^{j}} + 2\Gamma_{\alpha}^{\lambda}(b)\frac{\partial(bx)^{i}}{\partial b^{\lambda}} = P_{\alpha}^{i}(bx), \quad \varepsilon x = x,$$

where $bx = f_b x$,

(13)
$$P_{\alpha}^{j}(x) = \left[\frac{\partial(ax)^{j}}{\partial a^{\alpha}}\right]_{a=\varepsilon}, \quad \Gamma_{\alpha}^{\lambda}(b) = \frac{1}{2} \left[\frac{\partial q^{\lambda}(a,b)}{\partial a^{\alpha}}\right]_{a=\varepsilon}$$

Note that $\overline{P}_{\alpha}(x) = (P_{\alpha}^{j}(x))_{j=1...n}$ are linearly independent over \mathbb{R} (because of injectivity $a \mapsto f_a$).

Setting $b = \varepsilon$ in (12), we get

$$\left(\delta_{\alpha}^{\lambda} - \Gamma_{\alpha}^{\lambda}(\varepsilon)\right) P_{\lambda}^{i}(x) = 0$$

and, further,

$$\delta_{\alpha}^{\lambda} - \Gamma_{\alpha}^{\lambda}(\varepsilon) = 0.$$

Thus

(14)
$$\left[\frac{\partial \{g(a)\}^{\lambda}}{\partial a^{\alpha}}\right]_{a=\varepsilon} = \left[\frac{\partial q^{\lambda}(a,\varepsilon)}{\partial a^{\alpha}}\right]_{a=\varepsilon} = \delta^{\lambda}_{\alpha}.$$

By the inverse map theorem it means the local existence of g^{-1} . Further $f_b = f_{\varepsilon} \circ f_b \circ f_{\varepsilon} = f_{q_{\varepsilon}b}$ implies $q_{\varepsilon}b = b$. Thus

$$\frac{\partial q^{\lambda}(\varepsilon, b)}{\partial b^{\alpha}} = \frac{\partial (q_{\varepsilon}b)^{\lambda}}{\partial b^{\alpha}} = \delta^{\lambda}_{\alpha}.$$

Since $\partial q(a,b)^{\lambda}/\partial b^{\alpha}$ is continuous, the above means that

$$\frac{\partial q^{\lambda}(a,b)}{\partial b^{\alpha}} = \frac{\partial (q_a b)^{\lambda}}{\partial b^{\alpha}}$$

is an invertible matrix for a near ε .

It means that $q_a: b \mapsto q(a, b)$ $(a, b \text{ being near } \varepsilon)$ is locally invertible.

Thus any local Nono family is a partial Sabinin-Nono family.

Now, one may repeat the proof of Proposition 4 for a partial Sabinin-Nono family. Thus

 \square

9. Proposition. Any partial Sabinin-Nono family is a left Bol-Bruck loop action.

Combining Propositions 8 and 9 we come to

10. Proposition. Any local Nono family is a local left Bol-Bruck action of a left Bol-Bruck loop.

References

T. Nono

 [61] Sur les familles triples locales de transformations locales de Lie, J. Sci. Hiroshima Univ., Ser. A-I Math. 25 (1961), 357–366, MR 28 (1964) #2174b.

L.V. Sabinin

- [91] Analytic Quasigroups and Geometry (Russian), Monograph, Friendship of Nations University Press, Moscow, 1991, 112 pp.
- [99] Smooth Quasigroups and Loops, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, xvi + 249 pp.

DEPARTMENT OF MATHEMATICS, QUINTANA ROO UNIVERSITY, 77019 CHETUMAL, QUINTANA ROO, MEXICO

E-mail: lsbitneva@balam.cuc.uqroo.mx

(Received October 7, 1999)

408