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A class of quasigroups solving a problem of ergodic theory

Jonathan D.H. Smith

Abstract. A pointed quasigroup is said to be semicentral if it is principally isotopic
to a group via a permutation on one side and a group automorphism on the other.
Convex combinations of permutation matrices given by the one-sided multiplications
in a semicentral quasigroup then yield doubly stochastic transition matrices of finite
Markov chains in which the entropic behaviour at any time is independent of the initial
state.
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1. Introduction

In an ergodic finite stationary Markov chain, the ultimate distribution of states
is independent of the choice of initial state. Motivated by Robert Shaw’s work
on the dripping faucet as a chaotic system, the Japanese information theorist
Yasuichi Horibe initiated investigation of ergodic finite Markov chains with doubly
stochastic transition matrix such that the full entropic behaviour of the chain
at any time is independent of the choice of initial state [Ho]. It is convenient
to refer to such Markov chains as “superergodic”. Horibe showed that convex
combinations of the permutation matrices given by the left multiplications in
a group under multiplication or a cyclic additive group under (nonassociative)
subtraction yield superergodic transition matrices. He then posed the problem of
identifying a class of quasigroups, including the class of groups, such that each
quasigroup in the class yields a superergodic transition matrix. The purpose of
the current paper is to propose a solution to Horibe’s problem. The class of
quasigroups proposed, namely the left semicentral quasigroups, have independent
algebraic interest. They are intermediate between general group isotopes and the
central quasigroups in which the diagonal forms a normal subquasigroup of the
direct square. Left semicentral quasigroups (of unrestricted cardinality) form a
variety of pointed quasigroups.
Horibe’s work is reprised in Section 2. For further details on Markov chains,

one may consult [Fe]. For further details on entropy, one may consult [As]. Sec-
tion 3 introduces the class of left semicentral pointed quasigroups (Definition 3.1),
and shows that they form a variety (Theorem 3.3). Section 4 then shows that
finite left semicentral pointed quasigroups offer a solution to Horibe’s problem



410 J.D.H.Smith

(Theorem 4.2). For further details on quasigroups and universal algebra, one may
consult [SR].

2. Markov chains and Latin squares

Consider a finite, stationary Markov chain with stochastic transition matrix

(2.1) Π = [πij ]r×r,

so that each entry is non-negative, and
r
∑

j=1
πij = 1 for 1 ≤ i ≤ r. Use η to denote

the r-dimensional column vector, each of whose entries is 1. Since Πη = η, one
has det (Π− 1) = 0, so there is an r-dimensional row vector π with πΠ = π. The
Markov chain is said to be ergodic if all the entries of some positive power Πn of
Π are positive. In this case, Markov’s Theorem [Ho, Theorem 2] shows that there
is a probability distribution row vector π satisfying πΠ = π, such that each row
of Πn tends to π as n tends to infinity. In other words, the ultimate distribution
of states of the chain is π, independent of the initial distribution.
For a probability row vector ξ = [ξ1 ξ2 . . . ξr], the entropy

(2.2) H(ξ) = −

r
∑

i=1

ξi log ξi

is the expected value of the logarithm of the odds of occupying a given state. Set

(2.3) δi = [0 . . . 1 . . . 0],

the row vector with δi
j = if i = j then 1 else 0, to be the distribution corre-

sponding to certain occupancy of the i-th state. If the chain starts in the i-th
state, the distribution after n steps is δiΠn. Recall that the stochastic transition

matrix (2.1) is said to be doubly stochastic if
r
∑

i=1
πij = 1 for 1 ≤ j ≤ r. The

doubly stochastic r × r matrices form the (r − 1)2-dimensional convex hull of the
set of all r! permutation matrices of size r × r.

Definition 2.1 (cf. [Ho,(*)]). A stationary, ergodic Markov chain with doubly
stochastic transition matrix (2.1) is said to be superergodic if

(2.4) ∀n ≥ 0, ∀i 6= j, H(δiΠn) = H(δjΠn).

In other words, the entropy of the state distribution after any number n of steps,
starting from a single initial state, is independent of the choice of that initial
state. �

Let (Q, ·) be a quasigroup on the set {1, 2, . . . , r}. For each element q of Q, the
left multiplication

(2.5) L(q) : Q → Q; x 7→ q · x
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is a permutation of Q. Identify permutations of Q with the corresponding per-
mutation matrices. Suppose that

(2.6) p = [p1 p2 . . . pr]

is a probability distribution vector. Consider the doubly-stochastic matrix

(2.7) S(p, Q) =

r
∑

i=1

piL(i).

Then each row of S(p, Q) is a probability distribution whose entropy is H(p).
Note that if the entries of p are distinct, then S(p, Q) is a Latin square.

Definition 2.2. A quasigroup Q of finite order r is said to satisfy Horibe’s con-
dition if for each probability distribution p and positive power n, there is a pro-
bability distribution p′ and quasigroup Q′ such that

(2.8) S(p, Q)n = S(p′, Q′).
�

Horibe [Ho] observed that if a quasigroup Q satisfies the condition of Defini-
tion 2.2 (and if the probability distribution (2.6) has all entries positive), then
S(p, Q) is the transition matrix of a superergodic Markov chain. He showed that
a group Q satisfies the condition of Definition 2.2, and effectively presented cyclic
groups under subtraction as examples of non-associative quasigroups satisfying
the condition. Finally, he raised the following

Problem 2.3. Identify classes of quasigroups, including the class of (finite)
groups, satisfying the condition of Definition 2.2. �

It is convenient to refer to Problem 2.3 as Horibe’s Problem.

3. Central and semicentral quasigroups

Construe quasigroupsQ as algebras (Q, ·, /, \) of type {·, /, \}×{2}, with binary
operations of multiplication · (also denoted by juxtaposition), right division /, and
left division \, satisfying the identities

(3.1)
(x · y)/y = x, x = y \ (y · x)

(x/y) · y = x, x = y · (y \ x).

A pointed quasigroup (Q, e, ·, /, \) is an algebra of type {(e, 0)} ∪ [{·, /, \} × {2}]
such that (Q, ·, /, \) is a quasigroup with a nullary operation selecting an element
e of Q. A pointed quasigroup (Q, e, ·, /, \) is a group isotope if there is a group
(Q,+) with identity e and a pair R, L of permutations of Q such that

(3.2) x · y = xR + yL
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for x, y in Q (cf. [JK], [SR, §I.4]). A pointed quasigroup Q is central if there is
an abelian group (Q,+) with identity e and a pair of ρ, λ of automorphisms of
(Q,+) such that

(3.3) x · y = xρ + yλ

for x, y in Q (cf. [NK], [JK], [Sm, 418], [CP, Theorem III.5.2]).
The solution to Horibe’s Problem presented in the next section involves a

class of pointed quasigroups intermediate between group isotopes and central
quasigroups.

Definition 3.1 (cf. [B1], [B2]). A pointed quasigroup (Q, e, ·, /, \) is said to be
(left) semicentral if there is a group (Q,+) with identity e, a permutation R of
Q, and an automorphism λ of (Q,+), such that

(3.4) x · y = xR + yλ

for x, y in Q. �

The use of left multiplications in (2.7) implies the significance of left semicentral
quasigroups in the solution of Horibe’s Problem. Dually, however, one could
define the class of right semicentral quasigroups using x · y = xρ + yL with an
automorphism ρ and permutation L, in place of (3.4).
In the group isotope (Q,+) of a left semicentral quasigroup (Q, e, ·, /, \), denote

left multiplications by

(3.5) L+(q) : Q → Q; x 7→ q + x

for q in Q.

Lemma 3.2. For an automorphism θ of (Q,+), and for q in Q, one has

(3.6) θ−1L+(q)θ = L+(qθ).

Proof: For x in Q, one has xθ−1L+(q)θ = (q+ xθ−1)θ = qθ + x = xL+(qθ). �

Theorem 3.3. The class of left semicentral pointed quasigroups (Q, e, ·, /, \)
forms a variety of algebras of type {(e, 0)} ∪ [{·, /, \} × {2}].

Proof: By (3.4), one has xR = x · e and

(3.7) x+ y = xR−1

· yλ−1

for x, y in Q. Moreover, yλ = e+ yλ = eR−1

y = (e/e)y. Thus

(3.8) x+ y = (x/e) · ((e/e) \ y)
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(cf. [SR, I(4.4)]). The associativity of the quasigroup multiplication (3.8), and the
fact that the permutation λ : y 7→ (e/e) · y is an automorphism of (3.8), are then
expressible as identities in the language of pointed quasigroups. �

Remark 3.4. Belyavskaja and Tabarov [B1, Corollary 2] have shown that un-
pointed left semicentral quasigroups (“left linear” quasigroups in their notation)
are characterized by the identity

(3.9) [x(u \ y)]z = [x(u \ u)] · (u \ yz).

Of course, one should add nonemptiness to this characterization. �

4. Semicentrality and superergodicity

In this section, it will be shown that the class of finite, semicentral quasigroups
offers a solution to Horibe’s Problem.
Proposition 4.1. Let (Q, e, ·, /, \) be a left semicentral quasigroup of order r,
principally isotopic to the group (Q,+, e) via a permutation R and automor-
phism λ. Let α and β be automorphisms of (Q,+). Let p and p′ be r-dimensional
probability row vectors as in (2.6). Then

(4.1)

[

r
∑

i=1

piαL(i)

]





r
∑

j=1

p′jβL(j)



 =

r
∑

i=1

r
∑

j=1

pip
′

jαλβL(jiRβ).

Proof: Using Lemma 3.2 and (3.4), one has

αL(x)βL(y) = αλL+(x
R)βλL+(y

R)

= αλβλλ−1β−1L+(x
R)βλL+(y

R)

= αλβλL+(x
Rβλ)L+(y

R)

= αλβλL+(y
R + xRβλ)

= αλβL(yxRβ)

for x, y in Q. �

Theorem 4.2. Each finite, left semicentral pointed quasigroup satisfies Horibe’s

condition.

Proof: Let (Q, e, ·, /, \) be a left semicentral quasigroup on Q = {1, 2, . . . , r},
principally isotopic to the group (Q,+, e) via a permutation R and automor-
phism λ. Let α and β be automorphisms of (Q,+). Let Q1 be the left semicentral

quasigroup on Q with multiplication xR + yαλ. Let Q2 be the left semicentral
quasigroup on Q with multiplication xR + yβλ. Let Q3 be the left semicentral
quasigroup on Q with multiplication xR + yαλβ . Then (4.1) shows that, for pro-
bability distributions p1 and p2 on Q, there is a probability distribution p3 on Q
such that

(4.2) S(p1, Q1)S(p
2, Q2) = S(p3, Q3).

Using (4.2), Horibe’s condition (2.8) follows by induction on n. �
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