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Covering dimension and differential inclusions

G. ANELLO

Abstract. In this paper we shall establish a result concerning the covering dimension of
a set of the type {z € X : ®(z) N ¥(x) # 0}, where ®, ¥ are two multifunctions from X
into Y and X, Y are real Banach spaces. Moreover, some applications to the differential
inclusions will be given.
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Introduction

Very recently, in [10], B. Ricceri, improving a theorem of [9], has established the
following result:

Theorem A. Let X, Y be Banach spaces, ® : X — Y a continuous, linear, sur-
jective operator and ¥ : X — Y a completely continuous operator with bounded
range. Then, one has

dim({z € X : ®(x) = ¥(x)}) > dim (P~ (0)),
where “dim” means covering dimension.

In [9] and [10], he also presented several applications of this result.

The aim of the present paper is to extend Theorem A to the case where both
® and ¥ are two set-valued operators, dealing with the covering dimension of the
set

dim({z € X : @(z) N ¥(z) # 0}).
Our main result is Theorem 1, with its variant Theorem 2.
Two applications to differential inclusions are also established.

Basic definitions and preliminary results

Let A, B be two nonempty sets. A multifunction F from A into B (briefly F : A —
2B ) is a function from A into the family of all subsets of B. For every  C B and
every SC A, weput F~(Q) ={z € A: F(x)NQ # 0}, FT(Q)={r € A: F(z) C
Q} and F(S) = UgecF(z). Further, we put gr(F) = {(z,y) € AxB:y € F(z)}
and gr(F') will be called graph of F.
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If A, B are topological spaces and F : A — 2B is a multifunction, we say that
F is lower semicontinuous (resp. upper semicontinuous) in A when F~ () (resp.
F*(Q)) is open in A for any open Q C B. A multifunction F : A — 25 is called
continuous in A when it is both lower and upper semicontinuous in A.

Let (X, d) be a metric space, for any X1, Xo C X, put

dr (X1, X9) = max{ sup inf d(x,z), sup inf d(z,z)}.
rEX; 2€X2 2€X5 TEXT

The number (or eventually the symbol +00) dg (X1, X2) is called Hausdorff dis-
tance between X1 and X3. Let (Y,p) be another metric space and let F' be
a multifunction from X into Y with nonempty values. F' is called lipschitzean
when there exists a real number k > 0 such that pg(F(x), F(2)) < kd(z,z) for
any x,z € X. If £ < 1, F is called multivalued contraction.

Further, given two vector spaces X, Y, we say that a multifunction F' : X — 2Y
is a convex process if it satisfies the following three conditions:

a) F(z) + F(y) C F(x +y) for every z,y € X,

b) F(Ax) = AF(z) for every A > 0 and every x € X,

c) 0 € F(0).

It is easily seen that a convex process is, in particular, a multifunction with
convex graph (in fact, its graph is a convex cone).

Finally, for a set S in a Banach space, we denote by dim(S) its covering di-
mension ([4, p.42]). Recall that, when S is a convex set, the covering dimension
of S coincides with the algebraic dimension of S, this latter being understood as
oo if it is not finite ([4, p.57]). Also, conv(S) will denote the convex hull of S.

Now, we prove some lemmas which will be used in order to prove the main
result.

The following lemma is a well known result but we prefer to state and prove it
for the sake of clearness and completeness.

Lemma 1. Let X, Y be topological spaces, let ® : X — 2Y be a multifunction
with closed graph and let ¥ : X — 2Y be a multifunction with compact values.
Then, one has

{reX:ized (¥(x)}={reX:2(x)nT¥(z)# 0}

PROOF: Let 2 € X such that ®(x) N ¥(z) # 0, then z € &~ (¥(x)) C 2= (¥(z)).
Vice-versa, let © € &= (¥(x)) and let {xq}aecp be a net in &~ (¥(x)) which
converges to z. For any a € D, choose yo € ®(xo)N¥(x). Since ¥(z) is compact,
the net {ya}tacp has a cluster point y which belongs to ¥(x). Consequently,
the net {(za,Ya)}tacp lies in gr(®) and (x,y) is a cluster point of it. Since
gr(®) is closed, it follows that (z,y) € gr(®). Hence, y € ®(x) N ¥(z) and so
O(z) NT(x) # 0. O
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Let X be a real vector space and T be a subset of X. In the sequel, T* will
denote the set:

{z € T : for any y € X there exists r > 0 such that z + py € T for any p € R
with |p| < r}.

Let Y be another real vector space and let A be a convex subset of X x Y. For
each y € Y, we denote by AY the set {x € X : (z,y) € A}

Lemma 2. Let X, Y be real vector spaces and let A be a convex subset in X x Y.
Then, for any y1,y2 € Py (A)* one has dim(AY') = dim (AY2).

PrOOF: Fix y1,y2 € Py(A)*. Let n be a non negative integer such that n <
dim (A%!). Choose n + 1 affinely-independent points x1,...,z,+1 € AY! and let
r be a positive real number such that, for each p € R with |p| < r, one has
ya+p(y2 —y1) € Py (A). Since Py (A) is convex, then, for each A € [0,1], we have

1) M+ @=XN(y2+p(y2 —y1)) € Py(A) foreach peR with |p| <7

Choose A €]0,1] such that 0 < (21)‘ )\)32 < r and put p = (>‘_>322. By (1), there
exists x € Y such that

(z, My1+ (1 =N (y2 + p(y2 —y1))) € A.

Since A is convex, it follows that

(Azi+(1 = Nz, Ay + A1 = Ny1 + (1= N2 (y2 + p(y2 — 31))) € A
forall i=1,..,n+ 1.

By observing that

M+ A1 = Nyr + (1= V(g2 + py2 —v1)) = 2,

one has Az; + (1 — Nz € AY2 for all ¢ = 1,..,n 4+ 1. Since A > 0, the points
Ax1 4+ (1= Nz, .., Axpy1 + (1 — M)z are affinely independent. Consequently, we
have dim(A4%') < dim(A4%2). By interchanging the roles of y; and yso, it also
follows that dim (AY') > dim (AY2). Thus, dim(AY!) = dim (AY2). O

The following lemma gives a characterization of the lower semicontinuous mul-
tifunctions.

Lemma 3. Let X, Y be topological spaces and let F' : X — 2Y be a multifunc-
tion. Then, F is lower semicontinuous in X if and only if, for any subset A of X,
one has F(A) C F(A).

PROOF: Let F be lower semicontinuous in X and fix A C X. Let yp € F(A).
By absurd, suppose that yo ¢ F(A). Let zg € A such that yg € F(zp). Then,
yo € (Y\F(A)) N F(zg). Consequently, there exists a neighborhood U of zg in
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X such that (Y\F(A)) N F(z) # 0, for each zz € U. Fixing T € U N A, one has:
0 # (Y\F(A)NF(@) C (Y\F(A)) N F(A), which is absurd. Vice versa, suppose

F(A) C F(A) for any subset A of X and prove that, for any open Q in Y, F~(Q)
is open in X. Put C = Y\Q, we have F~(Q) = Y\FT(C). Now, if z € F(C)
one has F(z) C F(F+(C)) C F(F+(C)) CC = C,s0x € F(C). Hence, F+(C
is closed and F'~ () is open.

O

Main result

Before proving our main result, we recall that, if X is a nonempty set and F' :
X — 2% is a multifunction, z € X is said fixed point of F' when 2 € F(z). We
shall denote by Fix(F) the set of all fixed points of F.

We point out that the following theorem is an extension of Theorem 1 of [10]
where the same result was proved for single valued operator.

Theorem 1. Let X, Y be real Banach spaces, ® : X — 2Y a lower semi-
continuous convex process with nonempty closed values such that ®(X) =Y,
U : X — 2Y be a lower semicontinuous multifunction with nonempty closed con-
vex values such that U(X) is bounded and V(B) is relatively compact for every
bounded set B C X. Then, one has

dim({z € X : ®(z) N ¥(z) # 0}) > dim (2 (0)).

PROOF: Preliminarily, we suppose that dim(®7(0)) > 1. Thanks to Theorem 2
of [8], the multifunction ® has closed graph and maps open subsets of X into
open subsets of Y. Hence, denoting by Bx (z,r) (resp. By (y,r)) the closed ball
in X (resp. Y) of center = (resp. y) and radius r > 0, there exists § > 0 such
that By (0,9) C ®(Bx(0,1)). Moreover, ¥(X) being bounded, there exists p > 0

such that ¥(X) € By (0,p). Consequently, one has ¥(X) C ®(Bx(0,5)). Now,
we fix an open convex bounded subset A of X such that Bx (0, §) C A and put

K =¥(A). By hypotheses, K is compact. Further, we fix a positive integer n such
that n < dim(®7(0)) and z € K. Taking into account that Py (gr(®))* =Y,
by Lemma 2, we can choose n + 1 affinely-independent points u,1,..,%;n41
in @ (z) N A. By Theorem 2 of [8], the multifunction y — P (y) is lower
semicontinuous in Y. So is the multifunction y — ®~(y) N A. Moreover, its
values are convex and closed, and, if y € K, one has & (y) N A # (. Hence, by
applying the classical Michael theorem ([6, p.98]) to the restriction to K of the
latter multifunction, we obtain n + 1 continuous functions f, 1, .., f; nt1 from K
into A such that, for any y € K and i = 1,..,n + 1, one has

(I)(fz,z(y)) =y and fz,z(z) = Uz
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Now, for every i = 1,..,n + 1, fix a neighborhood U ; of u ; in A such that, for
any choice of points w; € U, ;, one has that w1, .., w,11 are affinely independent.
Put

n
Vz = ﬂ f;z'l(Uz,i)a
i=1

V. is a neighborhood of z in K. Since K is compact, there exist 21,..,2p in K
such that K = U?Zlej. At this point, for each y € K, we put
F(y) =conv({f.j(y) : j=1,..,p;i=1,..,n+1}).

Since, for each y € K, there exists j € {1,..,p} such that y € V,,, that is
fzi(y) € Uy, foralli =1,..,n+ 1, it follows that F(y) is a nonempty convex
compact subset of @~ (y)N A, with dim (F(y)) > n. Further, F being a continuous
multifunction ([6, p.86 e p.89]), one has that F(K) is compact. So, put C =
conv (F(K)), C is compact. Moreover, by Lemma 3, one has ¥(A) C ¥(4) = K.
Hence, putting

G(x) = conv(F(¥(z)) for each z € C,

one has, since C' C 4, that G(z) C C. At this point, by observing that G : C' — 2¢
is a lower semicontinuous multifunction with nonempty convex compact values
and with dim(G(z)) > n for each x € C, we deduce, by Proposition 2 of [2], that

dim({z € C:z € G(z)}) > n.
Now, if z € G(z), one has
x € conv (F(¥(z)) C conv (P~ (T(x))) C = (¥(z)).
Hence, by Lemma 1, we have ®(z) N ¥(z) # (). Consequently,
{reC:2eG)} C{reX :d(x)NT(x)# 0}
and the conclusion follows from ([4, p.220]).

If dim(®~(0)) = 0, by the above proof, we can deduce that {x € X : &(z) N
U(x) # 0} is nonempty, hence the conclusion follows. O

A variant of Theorem 1 is the following:

Theorem 2. Let X, Y be real Banach spaces, ® : X — 2Y a lower semicontinu-
ous multifunction with nonempty closed values, with convex graph and such that
®(X) =Y, and let ¥ : X — 2Y be a lower semicontinuous multifunction with
nonempty closed convex values and such that ¥(X) is compact. Then, one has

dim({z € X : ®(z) N ¥(z) # 0}) > dim (™~ (0)).

PrROOF: Thanks to Theorem 2 of [8], the multifunction y — @~ (y) is lower
semicontinuous. Moreover, one has

T(X) C Y = &(X)

and K = ¥(X) is compact.
At this point, the conclusion follows by observing that it is possible to repeat
the proof of Theorem 1 taking A = X. O
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Remark. If ¢ is as in Theorem 2 and ¥ as in Theorem 1, it is an open problem
to establish if the following condition:

dim({z € X : ®(z) N ¥(z) # 0}) > dim (2 (0))
holds.

Applications to differential inclusions

Now, we prove two theorems concerning the covering dimension of the solution
set of certain differential inclusions. We consider a free problem in Banach spaces.
The following result concerns the case of infinite dimensional Banach spaces. It
is an extension to differential inclusions of Theorem 2 of [10].

Theorem 3. Let I = [0,1], E be a infinite dimensional real Banach space, F :
IxE — 2 be a lower semicontinuous multifunction, with nonempty closed values
and such that:

1) there exists L>0 such that dg (F (t,z), F(t,y)) < L||x — y|| for any t € I,
z,y € E;
2) F(t,-) is a convex process for every t € I.

Finally, let f : I x E — E be a uniformly continuous function with relatively
compact range. Then, one has

dim{u € CY(I,E) : u/(t) € f(t,u(t)) + F(t,u(t)) for each t e I'} = oo.

PRrROOF: Fix xg € E, by Theorem 2.1 of [7], the set
{ue CYI,E): u(0) =2, u'(t) € F(t,u(t)) for each t e I}

is nonempty. Then, if z1,..,xy, are n-linearly independent vectors in F and if
u1,..,u, are n-function in C1(I, E) such that

u;(0) = x; and uj(t) € F(t,u;(t)) foreach tel, i=1,..,n,

it follows, in particular, that uy, .., u, are n-linearly independent functions in the
space C'! (I, E). Consequently, since n is arbitrary, one has that the convex set

{ueCYI,E): u'(t) € F(t,u(t)) foreachte I}

is infinite-dimensional.
Now, for every u € C1(I, E), we put

®(u) ={p e CO',E): o(t) eu'(t)— F(t,u(t)) for each te I}.
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As it has just been seen, one has dim(®~(0)) = co. Moreover, by condition 2)
we can deduce that ® : C1(I, E) — 20°(LE) s a convex process. Further, condi-
tion 1) assures that gr(®) is closed in the space C1(I, E) x C°(I, E) equipped with
the product topology. Now, if h € CO(I, E), by applying once more Theorem 2.1
of [7], we deduce that

& (h) ={ue CYI,E): u'(t) € F(t,u(t)) — h(t) for each t e I}

is nonempty (and infinite-dimensional). Thus, ®(C1(I, E)) = C(I, E). Hence,
by the Robinson-Ursescu theorem ([1, p.54]), ® is lower semicontinuous.
Finally, put ¥(u) = f(-,u()) for every u € C(I, E). Thanks to the Ascoli-
Arzela theorem, it is easily seen that ¥ : C1(I, E) — C9(I, E) is a continuous
function, with bounded range and it maps bounded sets into relatively compact
sets. At this point, the conclusion follows by applying Theorem 1 to & and V.
O

If F = R", we obtain the following version of Theorem 3, which is an extension
to differential inclusions of Theorem 3 of [10]:

Theorem 4. Let [ = [0,1], F : I x R* — 28" be a lower semicontinuous
multifunction, with nonempty closed values and such that:

1) there exists L>0 such that di (F(t,z), F(t,y)) < L||x — y|| for any t € I,
z,y € R";
2) F(t,-) is a convex process for any t € I.

Finally, let f : I x R™ — R"™ be a continuous bounded function. Then, one has

dim{u € CYHI,R™) : u/(t) € f(t,u(t)) + F(t,u(t)) foreach t eI} >n.

PRrROOF: The proof is omitted since it is similar to the previous one. (I

For other works concerning the topological dimension of the solution set of a
differential inclusion see also [5] and [3].
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