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On (transfinite) small inductive dimension of products®

V.A. CHATYRKO, K.L. KozLov!

Abstract. In this paper we study the behavior of the (transfinite) small inductive dimen-
sion (trind) ind on finite products of topological spaces. In particular we essentially
improve Toulmin’s estimation [T] of trind for Cartesian products.
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In this paper we study the behavior of the (transfinite) small inductive dimen-
sion (trind) ind on finite products of topological spaces. It is known that if the
finite sum theorem for ind holds in the factors X, Y then the inequality

(1) ind(X xY) <indX +indY

is true (Pasynkov [9] for completely regular spaces, see also [1] for regular 77-
spaces). Similar statements for the transfinite small inductive dimension trind
one can find in [11] (the case of regular T}-spaces) and in [2] (the case of normal
T} -spaces).

But if the finite sum theorem for ind fails even in one factor then the inequality (1)
is not valid for two compact spaces. Filippov [5] has constructed compact spaces
X, Y such that ind X = IndX =dimX =1, indY = IndY = dimY = 2 but
ind (X xY) =4 (see also [8]).

In the sequel, @ = A(«) +n(«) is the natural decomposition of the ordinal number
« into the sum of the limit ordinal number A(a) and the non-negative integer
n(a) > 0.

In [10] Toulmin has given the following estimation of the transfinite small inductive
dimension for the product of two spaces X, Y (X x Y is hereditarily normal).
Namely,

(2) trind (X xY) <trind X (+)trindY + ¢ (n(trind X ), n(trindY'))

where (+) is the natural sum of Hessenberg [6], ¢(0,m) = ¢(m,0) =0if m is a
non-negative integer and ¥(n,m) = n+m—1+max{yp(n—1,m),yp(n,m—1)} +
¥(n —1,m — 1) if n, m are positive integers.
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In particular for finite dimensional spaces X, Y the inequality

(3) ind(X xY) < op(ind X,indY)
is valid, where pp(n,m) = n 4+ m + ¥(n, m),n, m are non-negative integers (see
Tab. 1).

Observe that formula (2) can be written as follows
(2") trind (X x Y) < Atrind X)(+)A\(trindY) + o (n(trind X ), n(trind Y)).
In [9] another estimation of the small inductive dimension ind has been proved.
Namely,
(4) ind(X xY) <ep(indX,indY),
where pp(0,m) = ¢p(m,0) = m if m is a non-negative integer and pp(n,m) =
ep(n—1,m)+ ¢p(n,m—1)+ 2 if n,m are positive integers (see Tab. 2) (X, Y
are regular).

In this paper we essentially improve the inequalities (2)—(4).

By a space we mean a regular Ti-space. We let BdU denote the boundary of
the set U. Our terminology follows [E].

The following lemma is evident.

Lemma 1. Let X = X1UX9, where X; is a subset of X. If Int X1UInt Xo = X
and trind X; < «;, i = 1,2, then trind X < max{aj,as}.

Theorem 2. Let X = X7 U X9, where X; is closed in X, and trind X; < a,
i =1,2. Then
max{ay,as} if AMaq) # AMaz)
max{aj,ae} +1 if Aai)= Aaz).
In particular, in the finite-dimensional case we have
ind X < max{ind X1,ind Xo} + 1.

PROOF: If A(a1) # A(ae) then the inequality is valid due to [4, Theorem 7.2.6].
Let A(a1) = Mag). If x € X7\ X2 or z € X2\ X then trind, X < max{ai,as}.
Let now z € X; N Xy and A be a closed subset of X such that x ¢ A and
ANX; # 0,7 =1,2. Choose a partition C7 in X; between the point z and
the set A N X;. Obviously one can choose the partition C7 with trindC; <
a1. Let X3\ C1 = Uy UVy, where U, V] are open in X; and disjoint, and
xz € Uy, An X1 C V1. Choose a partition Cy in X9 between the point x and
the closed set ((C1 U Vi) U A) N Xa. Obviously one can choose the partition
Cy with trindCy < ay. Let Xo \ Co = Uy U Vo, where Uy, V5 are open in Xa
and disjoint, and = € Us, ((C1 U Vi) U A) N Xo C Va. Observe that the space
Y = C1UCyU (X1 N X2) is equal to the union Y7 UYs, where Y; = C; U (X1 N X2)
is a subset of Y. Moreover IntY; U IntYy = Y, trindY; < a; (recall that
Y; C X;). So by Lemma 1 we have the inequality trindY < max{aj,as}. The
set C =X\ (U1 \ X2)UUz)U (V1 U(Va\ X7))) is a partition between the point
x and the set A. Besides C' C Y. Hence trind C < max{aj,as}. O

trind X < {
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Remark 3. a) Theorem 2 is similar to [3, Theorem 3.9] in the case of regular
Ty-spaces. The analog of [3, Corollary 3.10] (the finite sum theorem for closed
subspaces) in the case of regular T7-spaces is also valid.

b) Recall that there exists a compact space L with indY = 2 which can be
represented as the union of two closed subspaces L; and Lo such that ind L1 =
ind Ly = 1 [4, Lokucievskij’s example 2.2.14].

c) Recall also that van Douwen and Przymusinski [4, Problem 4.1.B] defined even
a metrizable space Y with indY = 1 which can be represented as the union of
two closed subspaces Y7 and Y2 such that indY; = indYs = 0.

Let P =X x Y. Note that for a rectangular open subset U x V of P we have
(%) Bd(U x V) = (Bd(U) x [V]) U ([U] x Bd(V)).

The following lemma is evident.

Lemma 4. Let trind X = 0. Then trind (X xY) =trindY for any space Y.
Observe that in particular Lemma 4 is also valid for ind.
Now let us consider the finite-dimensional case.

Theorem 5. Let P =X x Y. Then
(5) ind P < p1(ind X, indY)

where p1(0,m) = p1(m,0) = m if m is a non-negative integer, ¢1(n,m) =
2(n 4+ m) — 1 if n,m are positive integers (see Tab. 3, observe that ¢1(n,m) =
max{p1(n —1,m),p1(n,m—1)}+2if n,m > 1).

PRrROOF: If at least one of the factors is zero-dimensional in the sense of ind then
the inequality holds due to Lemma 4. Suppose that ind X,indY > 1. Apply an
induction on the sum ind X +indY =k, k > 2.

Let £k = 2. Then for any point p € P and its any neighborhood W there is a
rectangular neighborhood U x V' C W of this point with ind BdU < 0, ind BdV <
0.

By Lemma 4 each element from the right part of equality () is not more than
one-dimensional. From Theorem 2 it follows that ind Bd(U x V) < 2. Hence
formula (5) is valid.

Let the theorem hold for k£ < n,n > 3. Put kK = n. For any point p € P and its
any neighborhood W there is a rectangular neighborhood U x V' C W of this point
with ind BdU < ind X — 1, ind BdV < indY — 1. By induction assumption the
small inductive dimension of each element from the right part of equality (*) is not
more than 2(n—1)—1. From Theorem 2 it follows that ind Bd(U x V) < 2(n—1).
Hence ind P <2(n—1)+1=2(ind X +indY) — 1. O

Using induction one can easily obtain the following
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Estimations.

(a) ¥(n,m) < Y(n+1,m),¢(n,m) < (n,m+1);

(b) 1(n,m) < pp(n,m) < pp(n,m), if n,m > 1 and if at least one of the
numbers is > 1 then both inequalities are strict.

Remark 6. It is easy to see that ¥)(n,n) > 2n—14+2¢(n—1,n—1), n > 1.
Moreover, if n > k then ¥ (n,n) > 2(28 — 1)n + 2Fyp(n — k,n — k) + f(k). Hence,
for every natural number m the inequality @7 (n,n) > mn holds for large n.

Estimation from Theorem 5 can be improved for the class of completely para-
compact spaces.

Let us recall [12] that a topological space X is completely paracompact if, for
any open cover A of X, there exist open star-finite covers u; of X, ¢ € N, such
that, for any = € X there exist O € A\, i € N and V € y; for which z € V C O.

It is known ([12]) that:

(a) any F, subset of a completely paracompact space is completely
paracompact;

(b) any regular completely paracompact space is paracompact and any
strongly paracompact space is completely paracompact;

(c) dim X <indX for any completely paracompact space.

Lemma 7. Let Z be a completely paracompact space and Z = Z1 U Zo, where
Z; is closed, ind Z; < 1,i=1,2, and ind (Z1 N Z2) < 0. Then ind Z < 1.

PROOF: If x € Z1\ Zy or « € Z3 \ Z1 then indzZ < 1. Let now x € Z1 N Zy and
A be a closed subset of Z such that ¢ A. Then from the proof of Theorem 2
it follows that there exists a partition C' between z and A such that C' C Y =
(Z1NZ3)uCLUCo, where ind C; < 0, i = 1,2. By property (c) and the finite sum
theorem for dim it follows that dim ¥ < 0. From (b) it follows that indY < 0.

Hence ind Z < 1. O
Theorem 8. Let P = X XY be completely paracompact. Then

(6) ind P < pa(ind X,indY),

where p2(0,m) = @2(m,0) = m if m is a non-negative integer, @a(n,m) =

2(n 4+ m) — 2 if n,m are positive integers (see Tab. 4, observe that ¢a(n,m) =
max{<p2(n - lvm)v </72(n7m - 1)} +2 lfTL, m > 1 and (nvm) 7é (1a 1))

PRrROOF: If at least one of the factors is zero-dimensional in the sense of ind then
the inequality holds due to Lemma 4. Suppose that ind X,indY > 1. Apply an
induction on the sum ind X +indY =k, k > 2.

Let £k = 2. Then for any point p € P and its any neighborhood W there is a
rectangular neighborhood U x V' C W of this point with ¢nd BdU < 0, ind BdV <
0.

Put Z = Bd(U x V), Zy = Bd(U) x [V],Z2 = [U] x Bd(V) then Z = Z1UZy, Z1 N
Zs = Bd(U) x Bd(V'). By Lemma 7 and property (a) we have indZ < 1. Hence
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formula (6) is valid.
Let the theorem hold for k¥ < n, n > 3. Put k = n. For any point p € P
and any its neighborhood W there is a rectangular neighborhood U x V C W
of this point with ind BdU < ind X — 1, ind BdV < indY — 1. By induction
assumption the small inductive dimension of each element from the right part
of equality () is not more than 2(n — 1) — 2. From Theorem 2 it follows that
ind Bd(U x V) <2(n—1)—1. Hence ind P < 2(n —1) =2(ind X + indY’) — 2.
O

Corollary 9. Let P = X xY, where X, Y are compact spaces, and ind X ,indY
> 1. Then

(7 indP < 2(ind X +indY) — 2.

Observe that estimation (7) is exact (i.e. it cannot be improved) for ind X =
indY = 1 (it is evident) and for ind X = 1, indY = 2 (the named earlier
Filippov’s result [5]).

Question A. Is estimation (7) exact for all situations?

Question B. Are there spaces X, Y such that ind X =indY =1 and
indX xY =37
n
Remark 10. Let P = [] X;, where X; is a compact space with ind X; > 1,
i=1
n
i=1,...,n. Then ind P < n(>_ ind X; —n+1). In the case when all spaces are
i=1
one-dimensional in the sense of ind the formula coincides with Lifanov’s result [7].

Now let us consider the transfinite case.

Theorem 11. Let P = X X Y and trind X < «, trindY < (3. Then

a(+)B+n(a) +n(B) -1  if n(a),n(B) > 1;

® trind P < { a(+)s otherwise.

(Observe that formula (8) can be written as follows
(8 trind (X x V) < M) (+H)A(B) + p1(n(a),n(B). )

PROOF: Use induction on a(+)5 =~. If vy < w then the inequality holds due to
Theorem 5.

Let the theorem be valid for v < v > w. Put v = v. Then for any point p € P
and its any neighborhood W there is a rectangular neighbourhood U x V.C W
of this point with trind BdU < «, trind BdV < (.

If v is limit then v = A(v) and A(«a) = o, A\(8) = B. We can assume that
AMa) > w and A(B) > w (otherwise apply Lemma 4). By induction assumption
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the transfinite small inductive dimension of each element from the right part of
equality (*) is less than v. From Theorem 2 it follows that trind Bd(U x V) < v
So the theorem holds in this case.
Let now n(v) > 1. Observe that A(v) = A(«@)(+)A(B) and n(v) = n(a) + n(B).
Let n(a) = 0 (analogously with n(3) = 0). Then trind BdU = o/ < A(«) and
trind BAV < A(#) + n(B) — 1. By induction assumption we have trind Bd(U) x
[V] < M@)(+)AD) + 91(n(a),n(8)) and trind (U] x Bd(V) < Aa)(+)MB) +
n(B3) — 1. Observe that A(a’)(+)A(8) < A(a)(+)A(3). From Theorem 2 it follows
that trind Bd(U x V) < Ma)(+)A(B) + n(B) — 1. So the theorem also holds in
the case.
Let n(o) > 1 and n(8) > 1. By induction assumption the transfinite small
inductive dimension of each element from the right part of equality () is not

more than A(a)(+)A(B) + max{¢1(n(a) — 1,n(8)), p1(n(a),n(B) — 1)}. From
Theorem 2 it follows that

trind Bd(U x V) < Ma)(+)A(B)+max{p1(n(a)—1,n(8)), ¢1 (n(a),n(8)—1)}+1.

Hence

trind P < Aa)(+)A(B) + max{e1(n(a) = 1,n(8)), p1(n(a), n(8) = 1)} +2
= M) (H)AB) + ¢1(n(), n(B))-

The theorem is proved. O

Tab 1., op(n,m) :

0 1 2 3 n
0 0 1 2 3
1 1 3 6 10
2 2 6 11 19
3 3 10 19 32
m
Tab 2., op(n,m) :
0 1 2 3 n
0 0 1 2 3
1 1 4 8 13
2 2 8 18 33
3 3 13 33 68
m
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Tab 3., p1(n,m) :

0 1 2 3 n
0 0 1 2 3
1 1 3 5 7
2 2 5 7 9
3 3 7 9 11
m
Tab 4., p2(n,m) :
0 1 2 3 n
0 0 1 2 3
1 1 2 4 6
2 2 4 6 8
3 3 6 8 10
m
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