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On weakly bisequential spaces

Chuan Liu

Abstract. Weakly bisequential spaces were introduced by A.V. Arhangel’skii [1], in this
paper. We discuss the relations between weakly bisequential spaces and metric spaces,
countably bisequential spaces, Fréchet-Urysohn spaces.
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1. Introduction

Let X be a topological space. A filter base (ω-filter base) is defined to be a family
ξ of nonempty sets such that if A, B ∈ ξ (for countable subfamily µ ⊂ ξ), there is
a C ∈ ξ such that C ⊂ A ∩B (C ⊂ ∩µ). A filter base ξ converges to a point x in
a space X (accumulates at the point x) if each neighborhood base of x contains
an element of ξ (respectively, if x ∈ ∩{P̄ : P ∈ ξ}). We say that a filter base
ξ meshes with a filter base η if every A ∈ ξ intersects every B ∈ η. A space X
is said to be bisequential (countably bisequential, weakly bisequential) at a point
x ∈ X if for any filter base (countable filter base, ω-filter base) in X accumulating
at x there is a countable filter base µ in X that converges to x and meshes with
ξ. A space is called bisequential (countable bisequential, weakly bisequential) if
it is bisequential (countably bisequential, weakly bisequential) at each point.
A space X is called Fréchet-Urysohn if given A ⊂ X , x ∈ X , and x ∈ Ā, there

exists a sequence {xn : n ∈ N} ⊂ A which converges to x.
A map f : X → Y is weakly bi-quotient if, whenever y ∈ Y and U is a cover

of f−1(y) by open subsets of X , then countably many f(U) with U ∈ U , cover a
neighborhood base of y in Y .
Let Sκ be a quotient space of the topological sum of κ many convergent se-

quences by identifying all limit points to a point. Sω is called sequential fan.
All the maps in this paper are continuous and onto, spaces are regular T1.

Readers may refer to [1], [2] and [3] for unstated notations and definitions.
The following diagrams indicate the relation between weakly bisequential

spaces (bi-quotient maps) and other spaces (maps).
bisequential → weakly bisequential → Fréchet-Urysohn.
bisequential → countably bisequential → Fréchet-Urysohn.
bi-quotient → weakly bi-quotient → pseudo-open.
bi-quotient → countably bi-quotient → pseudo-open.
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2. Main results

The following proposition is quite similar to the Proposition 3.2 in [7].

Proposition 2.1. The following properties of a map f : X → Y are equivalent:

(a) f is weakly bi-quotient;
(b) if an ω-filter base F accumulates at y in Y , then f−1(F) accumulates at
some x ∈ f−1(y).

Proof: (a)→(b). Suppose that f−1(F) does not accumulate at any x ∈ f−1(y).
For x ∈ f−1(y), there is a Fx ∈ F and a nbd Vx of x such that Vx ∩ f−1(Fx) = ∅.
{Vx : x ∈ f−1(y)} is an open cover for f−1(y). Since f is weakly biquotient,
there exists a countable family U ′={Vxi : i ∈ N} ⊂ {Vx : x ∈ f−1(y)} such that
y ∈ intf(∪U ′). Let {Fxi : i ∈ N} ⊂ F such that Vxi ∩f−1(Fxi) = ∅ for i ∈ N . So
f(Vxi) ∩ F = ∅ for all i ∈ N , where F ⊂ ∩{Fxi : i ∈ N}. Then f(∪U ′) ∩ F = ∅,
but y ∈ F̄ and f(∪U ′) is a nbd of y, a contradiction.

(b)→(a). Suppose that f is not weakly biquotient, then there is an open
cover U of f−1(y) for some y ∈ Y such that for any countable subfamily λ of U ,
y /∈ intf(∪U ′). Let F = {Y − f(∪λ) : λ ⊂ U , |λ| ≤ ω}, then F is an ω-filter base
accumulating at y. By (b), f−1(F) accumulates at some x ∈ f−1(y). Let U ∈ U
with x ∈ U , let λ = {U}. U ∩(f−1(Y −f(U))) 6= ∅, hence f(U)∩(Y −f(U)) 6= ∅,
a contradiction. �

Similar to the proof of Theorem 3.D.2 in [7], we have the following:

Theorem 2.1. A topological space Y is a weakly bisequential space if and only
if it is a weakly bi-quotient image of a metrizable space.

Corollary 2.1. A weakly bisequential space is Fréchet-Urysohn [1].

Theorem 2.2. A closed image X of a metric space is a closed s-image of a metric
space if and only if X is weakly bisequential.

Proof: It is easy to see that a closed s-mapping is weakly bi-quotient, so X is
weakly bisequential. (In fact, a pseudo-open Lindelöf map is weakly bi-quotient).
Now we prove that a weakly bisequential closed image of a metric space is a

closed s-image of a metric space. First, we prove that Sω1 is not weakly bisequen-
tial.
We write Sω1 = {∞} ∪ {Sα : α < ω1}, where Sα is a sequence converging to

∞. Let Hα = ∪{Sβ : β < α} for α < ω1, ∞ ∈ H̄α. Suppose Sω1 is weakly
bisequential, then there exists a decreasing sequence {An : n ∈ N} such that
{An : n ∈ N} meshes with {Hα : α < ω1}. We may choose xn ∈ An ∩ Sαn −
{x1, . . . , xn−1} recursively, then xn → ∞, a contradiction.

X is a closed image of a metric space, so it is a Fréchet-Urysohn space with
a σ-hereditarily closure preserving k-network ([4]). X contains no closed copy
of Sω1 , hence X is a Fréchet-Urysohn and ℵ-space ([5]), and thus it is a closed
s-image of a metric space ([6]). �
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Next, we discuss some relations between weakly bisequential spaces and other
topological spaces.
From the definition, we know that bisequential spaces are weakly bisequential.

Weakly bisequential spaces are Fréchet-Urysohn ([1]). Also, it is well known that
countably bisequential spaces are Fréchet-Urysohn. What is the relation between
countably bisequential spaces and weakly bisequential spaces? In fact, we have
the following examples:

Proposition 2.2. There exists a weakly bisequential space which is not count-

ably bisequential.

Proof: The sequential fan Sω is such a space, since every countable Fréchet-
Urysohn space is weakly bisequential ([1]), so it is weakly bisequential. But it is
not countably bisequential. Suppose not, we write Sω = {∞} ∪ {Sn : n ∈ N},
where Sn is a sequence converging to ∞. Let Hn = ∪{Si : i ≥ n}. Then
{Hn : n ∈ N} is a decreasing sequence accumulating at ∞ and we choose a
sequence {xk} such that xk ∈ Hk ∩Snk

for each k ∈ N and {xk} converges to∞,
this is a contradiction. �

Proposition 2.3. There exists a countably bisequential space which is not

weakly bisequential.

Proof: Let X be the Σ-product of {Dα : α < ω1}, where Dα = {0, 1} for each
α < ω1. It is well known that X is countably bisequential. But X is not weakly
bisequential ([1]). �

Simon [8] gave an example that the product of two compact Fréchet-Urysohn
spaces is not Fréchet-Urysohn. We prove that the spaces in Simon’s example are
weakly bisequential. So, not every product of compact weakly bisequential spaces
is Fréchet-Urysohn.
Let P be an almost disjoint family in ω, let Ω = ω ∪ {P : P ∈ P}. Endow Ω

with a topology as follow: each singleton in ω is open, for P ∈ P , a neighborhood
base of P is {P} ∪ {P −A : A ∈ [P ]<ω}. Then Ω is a locally compact space. Let
Ω′ be the one point compactification of Ω, we write Ω′=Ω ∪ {∞}.

Theorem 2.3. Ω′ is weakly bisequential if it is Fréchet-Urysohn.

Proof: Let F be an ω-filter base in Ω′ accumulating at ∞, let F ′ = F ∩ ω,
F ′′ = F ∩ P .

Case 1. F ′ is an ω-filter base in {∞} ∪ ω accumulating at ∞.

By [1, Theorem 6], {∞} ∪ ω is weakly bisequential. So there is a countable
decreasing sequence {An : n ∈ N} which converges to ∞ and meshes with F ′.
Hence {An : n ∈ N} meshes with F .

Case 2. F ′ is not an ω-filter base in {∞} ∪ ω accumulating at ∞.

Then F ′′ is an ω-filter base in {∞} ∪ P accumulating at ∞. By [7, Exam-
ple 10.15], {∞} ∪ P is bisequential, so there is a countable decreasing family
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{An : n ∈ N} which converges to ∞ and meshes with F ′′. Hence it meshes
with F .
So Ω′ is weakly bisequential. �

Theorem 2.4. There are two compact weakly bisequential spaces X and Y such
that X × Y is not Fréchet-Urysohn.

Proof: Let X and Y be the spaces in Simon’s example ([8]). By the theorem
above, X, Y are weakly bisequential, but X × Y is not Fréchet-Urysohn. �

Proposition 2.4. There exists a compact, weakly bisequential space which is

not bisequential.

Proof: In fact, both X and Y in Theorem 2.4 are not bisequential. Suppose
one of X and Y is bisequential, then so is α3 ([2]). So the product X × Y is
Fréchet-Urysohn ([2]), a contradiction. �

Theorem 2.5. Let X be a discrete space and X∗ = X ∪ {∞} the one point
compactification of X . Then X∗ is weakly bisequential if and only if it is bise-
quential.

Proof: We only prove sufficiency. If the cardinality ofX is non-measurable then,
by [7, Example 10.15], X∗ is bisequential. If the cardinality of X is measurable,
by [7, Lemma 10.14], there is an ultrafilter F such that ∩F = ∅. But ∩F ′ ∈
F for every countable F ′ ⊂ F . F is an ω-filter base accumulating at ∞ [7,
Lemma 10.14], then there is a sequence {An : n ∈ N} which converge to ∞ and
meshes with F . {An : n ∈ N} ⊂ F because F is an ultrafilter. ∩{An : n ∈ N} ∈
F , so ∩{An : n ∈ N} ∩ X 6= ∅, hence {An : n ∈ N} does not converge to ∞,
a contradiction. �

Proposition 2.5 (∃ measurable cardinal). There is a compact, countably bise-
quential space that is not weakly bisequential.

Proof: LetX∗ be the space in Example 10.15 in [7]. ThenX∗ is not bisequential.
By Theorem 2.5, X∗ is not weakly bisequential. �

A space X is called weakly quasi-first countable ([9]) if for each i ∈ N , there
exists a mapping Bi : N × X → P(X), where P(X) denotes the power set of X ,
such that the following hold:

(i) fix i ∈ N for each n ∈ N and x ∈ X , Bi(n + 1, x) ⊂ Bi(n, x), and
{x} = ∩{Bi(n, x) : n ∈ N}; and

(ii) a subset V of X is open if and only if for each y ∈ V and for each i ∈ N
there exists n(i) with Bi(n(i), y) ⊂ V .

If Bi = B for i ∈ N , then X is called weakly first countable. Obviously, weakly
first countable is weakly quasi-first countable.
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Theorem 2.6. A Fréchet-Urysohn, weakly quasi-first countable space X is

weakly bisequential.

Proof: For x ∈ X , let F be an ω-filter base accumulating at x. Since X is
weakly quasi-first countable, there is a family of subsets of X , say, {Bi(n, x) : n ∈
N, i ∈ N} satisfying (i) and (ii).

Claim 1. There exists i0 ∈ N such that {Bi0(n, x) : n ∈ N} meshes with F .

Suppose not; then for each i ∈ N , there exist n(i) and Fi ∈ F such that
Bi(n(i), x)∩Fi = ∅. Let F ∈ F where F ⊂ ∩{Fi : i ∈ N}. Then F ∩Bi(n(i), x) =
∅ for all i ∈ N . Since X is Fréchet-Urysohn and x is an accumulating point of F ,
there is {xn : n ∈ N} ⊂ F , xn → x. {xn : n ∈ N} ∩ Bi(n(i), x) = ∅, it is easy to
see that {xn : n ∈ N} is closed, a contradiction.
So there is i0 ∈ N such that {Bi0(n, x) : n ∈ N} converges to x and meshes

with F , hence X is weakly bisequential. �

Remark 2.1. It is natural to ask whether every weakly bisequential space is
quasi-weakly first countable, the answer is ‘No’. The one point compactification
of a discrete space Y whose cardinality is 2ω is such a space. Y is bisequential [7,
Example 10.15] but not first countable. So Y is not weakly quasi-first countable
because of the following Corollary 2.2.

A space X is called an α4 space if for every point x ∈ X and any countable
family {Sn : n ∈ N} of sequences converging to x one can find a sequence S
converging to x which meets infinitely many Sn.
A subset B of X is called a sequential neighborhood of x ∈ X if for every

sequence converging to x is eventually in B.

Theorem 2.7. A space X is weakly first countable if and only if X is a weakly
quasi-first countable, α4 space.

Proof: Necessity is obvious. We only prove sufficiency.
For x ∈ X , let Fx be the family {Bi(n, x) : n ∈ N, i ∈ N} that satisfies (i) and

(ii) in the definition of weakly quasi-first countable. Let
Bx = {∪F ′ : F ′ ⊂ Fx, |F ′| < ω, and ∪F ′ is a sequential neighborhood of x}.
We can see that Bx is countable, let B = ∪{Bx : x ∈ X}.
We will prove that B is a weak base for X .
Let U be a subset of X , for each x ∈ U . If there is a B ∈ Bx such that

x ∈ B ⊂ U , then U is open.

In fact, U is a sequential neighborhood for each x ∈ U , hence U is sequential
open. But X is a sequential space [9], so U is open.
Let V be an open subset of X , we prove that for x ∈ V , there is B ∈ Bx such

that B ⊂ V .
Let P = {F ∈ Fx : F ⊂ V }, and we rewrite P = {Fn : n ∈ N}.
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Claim 2. There is m ∈ N such that ∪{Fn ∈ P : n ≤ m} is a sequential
neighborhood of x.

Suppose not, there is a sequence {x(1)(n)} with x(1)(n) → x and {x(1)(n)} ∩
F1 = ∅. Since F1 ∪ F2 is not a sequential neighborhood of x, then there is a

sequence x(2)(n) with x(2)(n) → x and {x(2)(n)} ∩ (F1 ∪ F2) = ∅. continuing

this way, we get countably many convergent sequences {x(i)(n)}, (i ∈ N) with

x(i)(n) → x and {x(i)(n)} ∩ ∪{Fj : j ≤ i} = ∅. X is an α4-space, so there
is a sequence S = {yn : n ∈ N} which converges x and meets infinitely many

{x(i)(n)}. We prove that S is eventually in some finite union of a subfamily of P .
If not, pick n1 ∈ N such that B1(n1) ⊂ U . Since B1(n1) is not a sequential

neighborhood of x, there is subsequence S1 ⊂ S, S1 ∩ B1(n1) = ∅ and S − S1 is
eventually in B1(n1), choose ym1 ∈ S1. Pick n2 ∈ N such that B2(n2) ⊂ U . Since
S1 is not eventually in B2(n2), there is a subsequence S2 ⊂ S1 such that S2 ∩
B2(n2) = ∅ and S1−S2 is eventually in B2(n2). Pick ym2 ∈ S2−{ym1}. Suppose
that Bi(ni), Si, ymi (i ≤ j) have been selected in such a way that Sk ⊂ Sl if k < l,

Si is infinite for i ≤ j. Si ∩Bi(ni) = ∅, Si−1−Si is eventually in Bi(ni). Since S

is not contained in any finite union of subfamily of P , choose Bj+1(nj+1) ⊂ U ,

Sj is not eventually in Bj+1(nj+1), there is an infinite subsequence Sj+1 of Sj

such that Sj+1 ∩ Bj+1(nj+1) = ∅. Pick ymj+1 ∈ Sj+1 − {ymi : i ≤ j}.

We can get a subsequence S′ = {ymi} converging to x. From the construction

above, for each i ∈ N , S′∩Bi(ni) = ∅, so it is not difficult to see that S′ is closed,
a contradiction.
But from the selection of S, S cannot be eventually in any finite union of P .

A contradiction. So the claim has been proved.
So the finite union of P in claim 2 is an element of Bx. Hence B is a weak base

for X , and X is weakly first countable. �

Corollary 2.2. Let X be a countably bisequential space. Then X is first count-
able if X is weakly quasi-first countable.

Proof: Every countably bisequential space is an α4 space. ThusX is weakly first
countable by Theorem 2.7. It is well known that weakly first countable, Fréchet
Urysohn spaces are first countable. �

3. Questions

Question 3.1. LetX and Y be weakly bisequential. IsX×Y weakly bisequential
provided X × Y is Fréchet-Urysohn?

Let P be a cover for X . P is called a cs∗ − network if for any x ∈ X , x ∈ U
with U open and a sequence S converging to x, there is a P ∈ P such that x ∈ P ,
P ⊂ U and P contains a subsequence of S.

Question 3.2. Let X be a weakly bisequential space with a point-countable

k-network. Does X have a point-countable cs*-network?
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Remark 3.1. If the answer to Question 3.2 is positive, then we can give an
affirmative answer to the Question 10.2 in [3].

Question 3.3. Let X be a Fréchet-Urysohn space with a point-countable k-

network. Is X weakly bisequential if it contains no closed copy of Sω1?

Question 3.4. Let X be a Fréchet-Urysohn space with countable network. Is X
weakly bisequential ?

Question 3.5. Is it possible to characterize weak bisequentiality in terms of the

Fréchet-Urysohn property ?
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