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Abstract initiality

Lutz Schröder, Horst Herrlich

Abstract. We study morphisms that are initial w.r.t. all functors in a given conglomerate.
Several results and counterexamples are obtained concerning the relation of such prop-
erties to different notions of subobject. E.g., strong monomorphisms are initial w.r.t. all
faithful adjoint functors, but not necessarily w.r.t. all faithful monomorphism-preserving
functors; morphisms that are initial w.r.t. all faithful monomorphism-preserving functors
are monomorphisms, but need not be extremal; and (under weak additional conditions)
a morphism is initial w.r.t. all faithful functors that map extremal monomorphisms to
monomorphisms iff it is an extremal monomorphism.
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Classification: 18A10, 18A20, 18A22

Initiality of morphisms or sources w.r.t. a functor is one of the most important
notions of category theory and plays a central role e.g. in categorical topology
or in the theory of fibrations (cf. [1], [2], [3], [4]). It is usually studied from the
point of view of concrete categories, i.e. categories equipped with a fixed forgetful
functor into a base category. In this paper, we adopt a more ‘abstract’ point of
view, in the sense that we study morphisms that are initial with respect to all
functors that satisfy a given property (e.g. preservation of monomorphisms); seen
this way, initiality becomes a property of morphisms in abstract categories.
Morphisms with such initiality properties have a tendency to be monomor-

phisms. The usual additional properties such as extremality or regularity inter-
relate with initiality properties in various ways; e.g., strong monomorphisms are
initial w.r.t. all faithful adjoint functors, and extremal monomorphisms are initial
w.r.t. all solid functors. Several statements of this kind, along with counterexam-
ples taken from categories of non-connected spaces showing, e.g., that extremal
monomorphisms need not be initial w.r.t. faithful adjoint functors, are collected
in Section 2.
Our main result, proved in Section 3, states that morphisms that are initial

w.r.t. all faithful functors that preserve a given class of monomorphisms must
belong to the closure of that class under composition and left cancellation; this
generalizes a statement proved in [10]. The proof makes use of the semicategory
method introduced in [10], which is briefly summarized at the end of Section 1.
As a corollary we obtain, under weak completeness conditions, a characterization
of initiality for the case of preservation of extremal monomorphisms. Moreover,
we present an example which shows that monomorphisms can be initial w.r.t. all
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faithful monomorphism-preserving functors without being extremal; thus, initia-
lity in this sense defines an interesting new class of monomorphisms.
For the sake of readability, we have restricted the exposition to initiality of

morphisms; however, all results presented below (possibly with the exception
of Corollary 3.7) are easily carried over to initiality of sources. Unexplained
categorical terminology is referred to [1].

1. Basic concepts

The notion of initiality can be defined w.r.t. arbitrary functors; we recall the
definition for morphisms as given e.g. in [1]:

Definition 1.1. Let F : A → B be a functor. A morphism f : A → B in
A is called initial w.r.t. F if, whenever g : C → B is a morphism in A and
h : FC → FA is a morphism in B such that Ffh = Fg, then there exists a
unique morphism h̄ in A such that F h̄ = h and fh̄ = g.

If F is faithful, then this definition agrees with the usual one. In the theory of
fibrations, the term ‘cartesian’ is usually used instead. We extend this notion to
conglomerates of functors:

Definition 1.2. Let G be a conglomerate of functors. A morphism f in a cat-
egory A is called G-initial if it is initial with respect to all functors in G with
domain A.

We will liberally use obvious terms such as ‘faithful-initial’ or ‘adjoint-initial’.
E.g., it has been shown in [10] that a morphism is faithful-initial iff it is a section,
and functor-initial iff it is an isomorphism. The former statement will turn out
to be a special case of a more general result presented below.
We will pay special attention to initiality with respect to the following con-

glomerates of functors:

Definition 1.3. LetM be a class of monomorphisms in a categoryA. A functor
is called M-preserving if it maps all elements of M to monomorphisms. The
conglomerate of (faithful)M-preserving functors with domain A will be denoted
by GM (FM).

For technical purposes, we will need the following notions introduced in [11]:

Definition 1.4. A class M of morphisms in a category A is called coclosed if
it contains all identities, is left cancellable in the sense that fg ∈ M implies
g ∈ M, and is closed under composition. A further class A of morphisms in A
is calledM-coclosed if A is closed under composition with arbitrary morphisms
from the left and under left cancellation of M-morphisms (i.e. g ∈ A implies
fg ∈ A for all f , and mg ∈ A implies g ∈ A for all m ∈ M). The coclosure and
theM-coclosure in the obvious sense of a class S are denoted by clS respectively
clMS.



Abstract initiality 577

E.g., the class of all monomorphisms in a category is coclosed, and given a
morphism f , the class of all morphisms g such that fx = fy implies gx = gy is
mono-coclosed. The smallest coclosed class in a category is always the class of all
sections. Moreover,

Proposition 1.5. Let G be a conglomerate of functors; then in any category,

the class of G-initial morphisms is coclosed. �

Since the complement of a coclosed classM is obviouslyM-coclosed, we have
Lemma 1.6. LetM ⊂MorA be coclosed, and let S ⊂MorA. Then

clMS ∩ Ident(A) = ∅ ⇐⇒ clMS ∩M = ∅ ⇐⇒ S ∩M = ∅.
In the proof of the main result, we will need the semicategory method intro-

duced in [10], which allows us to construct extensions of categories by adding
artificial morphisms without having to define all of the newly arising composites.
We briefly review the involved concepts; further details and full proofs (not needed
for the understanding of the present paper) can be found in [8,10].
A semicategory is a structure consisting of objects, morphisms and a composi-

tion operation in the usual sense which may fall short of being a category inasmuch
as the composite fg, where the domain of f coincides with the codomain of g,
need not always be defined (even when f or g is an identity). The identity and
associativity laws are required to hold in the following form: For a morphism
f : A → B, the composites fidA and idBf are equal to f whenever they are
defined; moreover, if composites fg and gh are defined, then (fg)h and f(gh) are
defined and equal.
The morphisms of a semicategory and their composition can be regarded as

generators and relations; in this sense, every semicategory A freely generates
a category A∗ (the hom-set condition being ignored for the moment) which is
constructed by first taking the category of paths over A in the obvious sense
(where identities are admitted as components of paths) and then factoring out
the smallest congruence that makes the map that sends an A-morphism to the
corresponding path of length 1 a functor. As an application of the Church-Rosser
technique (cf. [7]), it can be shown that each morphism A → B inA∗ has a unique
normal form of the type fn . . . f1 : A → B, n ≥ 0, where the fi are A-morphisms,
none of the fi is an identity, and none of the composites fi+1fi is defined in A.
In particular, A injects into A∗.

2. Initiality vs. algebraicity

We begin with a number of observations that illustrate the rule of thumb that,
the more ‘algebraic’ functors get, the more monomorphisms are initial with respect
to them.

Proposition 2.1. Strict monomorphisms are FMono-initial.

Proof: Let m : A → B be a strict monomorphism in a category A, and let
U : A → B, U ∈ FMono. To show that m is initial w.r.t. U , let g : C → B be a
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morphism in A, and let h : UC → UA be a morphism in B such that Umh = Ug.
Then xm = ym in A implies xg = yg, since U is faithful; hence there exists h̄ such
that mh̄ = g, and since Um is a monomorphism, we have Uh̄ = h as required.

�

Remark 2.2. As the above proof shows, every strict monomorphism m is even
F{m}-initial.

Proposition 2.3. Strong monomorphisms are faithful-adjoint-initial.

Proof: Let m : A → B be a strong monomorphism in a category A, let (η, ε) :
F ⊣ U : A → B be an adjoint situation, where U is faithful, and let g : C → B
and h : UC → UA such that Umh = Ug. Then

mεAFh = εBFUmFh = εBFUg = gεC .

Now εC is an epimorphism because U is faithful; thus the squarem(εAFh) = gεC

admits a diagonal d:

FUC
εC

//

εAFh

��

C

g

��

d

||yy
yy

yy
yy

y

A m
// B

.

In particular, we have md = g, and since Um is monic, Ud = h as required. �

Remark 2.4. Of course, we have not fully used the fact that U is faithful and
adjoint in the above proof; in fact, it suffices that U preserves monomorphisms (or
even justm) and that there exist a functor F : B→ A and a pointwise epimorphic
natural transformation ε : FU → idA (which implies that U is faithful).

Proposition 2.5. Extremal monomorphisms are solid-initial.

Proof: Let m : A → B be an extremal monomorphism in A, and let U : A→ B
be a solid functor (cf. [1]). Define a U -structured sink T with codomain A by

T = {(C, h) | ∃g : C → B : Ug = Umh}.

By solidity of U , there exists a semifinal arrow (e, D) for T , and by semifinality of
(e, D), there exists f : D → B such that Ufe = Um. Since (A, idUA) ∈ T , there
exists ē : A → D in A such that Uē = e. ē is an epimorphism, because semifinal
arrows are generating; thus ē is an isomorphism, since f ē = m by faithfulness
of U . This implies that for each (C, h) ∈ T , there exists h̄ : C → A such that
Uh̄ = h, i.e. m is initial w.r.t. U . �

This series of statements is completed by the remark that, given any reasonable
definition of algebraic functor, monomorphisms are algebraic-initial (cf. [1,5,6]).
While we will see below that FMono-initial morphisms must be monic, and

that this statement extends to the situation of Remark 2.4, no such partial
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converses hold for Propositions 2.3 and 2.5. (Note, however, Remark 3.2.) For
instance, if A is a category such that for each comonad on A, the counit consists
of isomorphisms, then every adjoint functor with domain A is full and faithful,
and hence all A-morphisms are adjoint-initial. An example of this kind is the
category with precisely two morphisms id and f , where ff = f (in particular, f
is not monic).
Moreover, the obvious attempts to weaken the conditions in the above propo-

sitions fail: It is well known that not all monomorphisms are solid-initial (or even
topological-initial); the corresponding generalizations of Propositions 2.1 and 2.3
are dealt with by the following counterexamples:

Example 2.6. LetA be the full subcategory of the category of topological spaces
spanned by the spaces of cardinality at most 1 and the non-connected spaces; let
U : A → Set denote the usual forgetful functor. U is adjoint, since A contains
all discrete spaces. Furthermore, it is easily checked that a morphism in A is epic
iff it is surjective.
Now let X be the discrete space with carrier set {0, 1}, and let Y be the space

{0, 1, 2} with open sets ∅, {2}, {0, 1}, and Y ; let m : X →֒ Y denote the inclusion.
m is an extremal monomorphism: If m = ge, where e is an epimorphism, then
e is bijective and hence an isomorphism, since any space in A of cardinality 2 is
discrete. However, m is not initial w.r.t. U : Let g : Y → X be the map given by
g(0) = 0 and g(1) = g(2) = 1; then mg is continuous, since the subspace {0, 1} of
Y is indiscrete, but g is not, since g−1[{1}] = {1, 2} is not open.

Example 2.7. LetB be the full subcategory of the category of topological spaces
spanned by the spaces with precisely two connected components. It is easily
verified that a morphism in B is monic iff it is injective (i.e. the forgetful functor
V : B→ Set preserves monomorphisms) and epic iff it is surjective.
Now take m : X →֒ Y as in the previous example. It is seen as above that m is

not initial w.r.t. V ; however, m is a strong monomorphism in B: Let W and Z be
spaces in B, and let e :W → Z, f :W → X , and h : Z → Y be continuous maps,
where e is surjective, such that he = mf . We have to show that this commutative
square admits a diagonal d:

W
e

//

f

��

Z

h

��

d

~~}}
}}

}}
}}

X m
// Y

.

Of course, d exists as a map; we can assume w.l.o.g. that d (and hence f) is
surjective. To see that d is continuous, we have to show that d−1[{0}] and
d−1[{1}] are open, i.e. that these sets form the unique decomposition of Z into
disjoint nonempty open sets. But this is clear, since e−1[d−1[{0}]] = f−1[{0}]
and e−1[d−1[{1}]] = f−1[{1}] form the unique decomposition of W (and the map
A 7→ e−1[A] is injective).
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3. A new class of monomorphisms

As indicated above, Proposition 2.1 has a partial converse, which is part of the
following more general statement:

Theorem 3.1. LetM be a class of monomorphisms in a categoryA. Then every

FM-initial morphism belongs to clM.

Proof: Since FM = FclM, we can assume thatM is coclosed. Let f : A → B
be a morphism in A such that f /∈ M. Extend A by a new morphism x : A → A
and define composition incompletely by

gx = g for each g ∈ clM{f}.

This defines a semicategory B in the sense explained in Section 1: The identity
and associativity laws hold, because idA /∈ clM{f} by Lemma 1.6, respectively
because clM{f} is closed under composition from the left. Thus, the morphisms
in the freely generated category B∗ have a unique normal form of the type

grxgr−1 . . . xg1, r ≥ 1,

where the gi are A-morphisms such that gi /∈ clM{f}, i = 2, . . . , r (this normal
form is obtained from the normal form discussed in Section 1 by just filling in
identities).
In particular, the functor E : A → B∗ is indeed an embedding, x is really a

new morphism, and B∗ satisfies the hom-set condition. Moreover, E preservesM:
Let m ∈ M, and let g and h be morphisms in B∗ with normal forms grx . . . xg1
respectively hsx . . . xh1 such that mg = mh. Then, since clM{f} is stable un-
der left cancellation ofM-morphisms, mgrx . . . xg1 and mhsx . . . xh1 are normal
forms of the same morphism; this implies g = h as required.
Thus E ∈ FM; however, f is not E-initial, since fx = f , but x does not belong

to A. �

(The construction applied in the above proof has been introduced in [9].)

Remark 3.2. It is easily seen that the extension E constructed in the above proof
has a left inverse (namely, the functor that identifies x and idA); thus, the im-
proved version of Proposition 2.3 indicated in Remark 2.4 does have a partial
converse in the sense that every morphism that is initial w.r.t. all functors of the
mentioned type is a monomorphism.

Remark 3.3. Similarly as in [10], Theorem 3.1 is easily generalized to sources:
Every FM-initial source meets clM (cf. [1] for the definition of initial source).
Noticing furthermore that a source is initial w.r.t. the unique functor into the ter-
minal category iff it is a product, one obtains a characterization of GM-initiality:
a source is GM-initial iff it is a product and meets clM (the point being that,
given a source S with the latter property, FS is a monosource for each F ∈ GM).
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This statement is, of course, entirely uninteresting in the special case of 1-sources
(i.e. morphisms); but even the general case mostly yields examples of limited
interest, since product projections tend to be retractions.
The picture changes if the scope is extended to include initiality of cones, where

a cone µ with codomain D is called initial w.r.t. a functor F if, whenever h is
a morphism and ν is a cone with codomain D such that Fµh = Fν, then there
exists a unique morphism h̄ such that µh̄ = ν and F h̄ = h. Indeed, a cone is
GM-initial iff it is a limit and meets clM; e.g., the cones associated to equalizers
and intersections are GRegMono-initial respectively GMono-initial.

The converse of the above theorem is, of course, false in the general case;
however, in conjunction with Propositions 2.1 and 1.5, we obtain

Corollary 3.4. Let A be a category, and let M ⊂ StrictMono(A). Then a
morphism is FM-initial iff it belongs to clM. �

The special caseM = Sect(A) has been treated in [10]. As a further applica-
tion, we have

Example 3.5. In Cat, every extremal epimorphism can be factored into two
regular epimorphisms: Let F : A → B be an extremal epimorphism in Cat (i.e.
F [A] generates B), and let G be the coequalizer of the congruence relation of F .
Then there exists a functor H such that HG = F . It is easily seen that H is
bijective on objects and full; hence H is a regular epimorphism.
As a consequence,

ExtrEpi(Cat) = clRegEpi(Cat),

where cl denotes the closure of a class of epimorphisms, defined dually to Defi-
nition 1.4 (recall that the class of extremal epimorphisms is always closed under
right cancellation, and closed under composition in categories with pullbacks).
Thus, by the dual of the corollary above, a morphism in Cat is final w.r.t. to all
faithful functors that preserve regular epimorphisms iff it is an extremal epimor-
phism.

A similar argument produces a characterization of FExtrMono-initiality in suf-
ficiently well-behaved categories. The proof needs the following

Lemma 3.6. Let A be a category, and letM ⊂MonoA be coclosed and closed
under intersections. Then the class of FM-initial morphisms is closed under

intersections.

Proof: By assumption onM and by the above theorem, the intersection m of
a family of FM-initial subobjects belongs to M; hence Um is a monomorphism
for each U ∈ FM. Using this fact, initiality of m w.r.t. U is easily verified along
the same lines as in Proposition 2.1. �
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Corollary 3.7. Let A be a category with equalizers and intersections. Then the

FExtrMono-initial morphisms in A are precisely the extremal monomorphisms.

(Under the given conditions, extremal monomorphisms and strong monomor-
phisms coincide; cf. [1].)

Proof: By [1], Corollary 14.20, ExtrMono(A) is the closure of RegMono(A) un-
der composition and intersections; in particular, ExtrMono(A) is coclosed, since
extremal monomorphisms are always stable under left cancellation. Moreover,
RegMono(A) ⊂ I by Proposition 2.1, where I denotes the class of FExtrMono-
initial morphisms; by Proposition 1.5 and the above Lemma, this implies
ExtrMono(A) ⊂ I. Conversely, I ⊂ ExtrMono(A) by Theorem 3.1. �

(Note that Theorem 3.1 is invoked for both inclusions!)

To justify the title of the section, we conclude with a counterexample which
shows that FMono-initial morphisms, which are monomorphisms by Theorem 3.1,
need not be extremal (the question whether every F{m}-initial monomorphism m

is extremal remains open; cf. Remark 2.2). As seen in Example 2.7, even strong
monomorphisms need not be FMono-initial; thus the FMono-initial morphisms form
a class of monomorphisms that is contained in the class of strict monomorphisms
and incomparable to the usual broader notions.

Example 3.8. Let B be the free category over the graph

•
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/
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A n
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��
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0
0
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m

//
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•

,

and let ∼ denote the equivalence relation generated by

gn ∼ mf, bn ∼ af, and gc ∼ md.

Then ∼ is already a congruence on B; let A be the associated quotient category
of B. Note that ad 6= bc in A.
Now m and n are monomorphisms in A; n is not extremal, since it is also an

epimorphism in A. However, n is FMono-initial: Let U : A → C be a faithful
functor that preserves monomorphisms, and let Unh = Ux for morphisms x :
X → B and h : UX → UA, where X is an A-object. Then x = n implies
h = idUA = UidA. If x = idB , then Un is an isomorphism with inverse h; thus,
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δ = Ufh is a diagonal for the squares UaUf = UbUn and UmUf = UgUn and
hence for the square UgUc = UmUd, because Um is a monomorphism. This
implies U(ad) = UaδUc = U(bc), in contradiction to faithfulness of U . The only
remaining case is x = c. In this case, UmUfh = UgUnh = UgUc = UmUd and
hence Ufh = Ud; thus U(ad) = UaUfh = UbUnh = U(bc), again a contradiction.
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