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Products in almost f-algebras
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Abstract. Let A be a uniformly complete almost f -algebra and a natural number p ∈
{3, 4, . . . }. Then Πp(A) = {a1 . . . ap; ak ∈ A, k = 1, . . . , p} is a uniformly com-
plete semiprime f -algebra under the ordering and multiplication inherited from A with
Σp(A) = {ap; 0 ≤ a ∈ A} as positive cone.
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1. Introduction

It is shown by Buskes and van Rooij in [5; Theorem 9] that if A is a uniformly
complete almost f -algebra, then the set Π3 (A) = {fgh; f, g, h ∈ A} is a uniformly
complete semiprime f -algebra with respect to the multiplication and ordering
inherited from A. However, their proof relies heavily on the representation theory,
so Zorn’s lemma (i.e., the axiom of choice) is (unnecessarily) involved.
In this work, we present a generalization of the latter result to the case of

an arbitrary natural number p ≥ 3 using only algebraic methods, thus avoiding
Zorn’s lemma as well as representation theorems.
One of the results shown in this paper is a generalization of a theorem about ho-

mogeneous polynomials on f -algebras (due to Beukers and Huijsmans) to the case
of almost f -algebras. The theorem in question is the following: if A is a uniformly
complete semiprime f -algebra and F ∈ R

+ [X1, . . . , Xn] is a homogeneous poly-
nomial of degree p (p ∈ N) then there exists a ∈ A+ such that ap = F (a1, . . . , an)
for every a1, . . . , an ∈ A+ ([3; Theorem 5]).
For terminology and properties of vector lattices not explained or proven in

this paper we refer to [7] and for elementary almost f -algebras, d-algebras and
f -algebras theories, we refer to [1], [2], [8], and [9].

2. Preliminaries, some results in almost f-algebras

All (real) vector lattices and (real) lattice ordered algebras under consideration
are supposed to be Archimedean and the only topology we consider in this paper
is the (relatively) uniform topology ([7; Sections 16 and 63]).
Let A be a vector lattice and 0 ≤ e ∈ A. The principal o-ideal (order ideal) of

A generated by e is denoted by Ae and it is a sublattice of A with e as a strong
order unit.
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The vector lattice A is said to be a lattice ordered algebra (or l-algebra) if there
exists an associative multiplication in A with the usual algebraic properties such
that ab ∈ A+ for all a, b ∈ A+. The l-algebra A is called an f -algebra whenever
a ∧ b = 0, and 0 ≤ c ∈ A imply ac ∧ b = ca ∧ b = 0. The l-algebra A is called an
almost f -algebra if a∧ b = 0 implies ab = 0. The l-algebra A is called a d-algebra
whenever a ∧ b = 0, and 0 ≤ c ∈ A imply ac ∧ bc = ca ∧ cb = 0.
Any f -algebra is an almost f -algebra and a d-algebra but not conversely. Al-

most f -algebras need not be d-algebras and vice versa. Archimedean (almost)
f -algebras are automatically commutative (and even associativity follows in case
of f -algebras) and have positive squares. Archimedean d-algebras need not be
commutative nor have positive squares. Archimedean d-algebras which are com-
mutative or do have positive squares are almost f -algebras.
For any l-algebra A, we denote by N(A) the set of all nilpotent elements of A.

We said that A is semiprime if N(A) = {0}. If A is an f -algebra then

N(A) = {a ∈ A; a2 = 0} = {a ∈ A; ab = 0 for all b ∈ A}.

If A is an almost f -algebra then

N(A) = {a ∈ A; a3 = 0} = {a ∈ A; abc = 0 for all b, c ∈ A}

and the quotient A/N(A) is an Archimedean semiprime f -algebra. The equiv-
alence class of the element a ∈ A in A/N(A) is denoted by [a]. Any almost
f -algebra (or d-algebra) with multiplication unit 0 < e is semiprime and any
semiprime almost f -algebra (or d-algebra) is an f -algebra.
Let A be an l-algebra and p ∈ {1, 2, . . .}. Throughout this paper we will keep

the following notations:

(i) Πp (A) =
{

a1 . . . ap; ak ∈ A, k = 1, . . . , p
}

;
(ii) Σp (A) = {ap; 0 ≤ a ∈ A}.

By agreement, we put a0b = ba0 = b for all a, b ∈ A.
Let A be a vector lattice. The order bonded operator π of A is called ortho-

morphism if |a| ∧ |b| = 0 implies |π (a)| ∧ |b| = 0. The collection Orth(A) of
all orthomorphisms on A is, with respect to the usual vector spaces operations
and composition as multiplication, an Archimedean f -algebra with the identity
mapping IA on A as a unit element. Moreover, if A is uniformly complete, so is
Orth(A) (for more information about orthomorphisms, refer to [8; Chapter 20]).
Let A and B be vector lattices and p ∈ {2, 3, . . .}. The p-linear map Ψ : Ap →

B is said to be positive if Ψ
(

a1, . . . , ap

)

∈ B+ for all a1, . . . , ap ∈ A+. The
positive p-linear map Ψ : Ap → B is said to have the property (AF ) if ai ∧ aj = 0

for some i, j ∈ {1, . . . , p} implies Ψ
(

a1, . . . , ap

)

= 0.
The proof of commutativity of Archimedean almost f -algebras, given by Ber-

nau and Huijsmans in [2; Theorem 2.15], does not make use of associativity. In
fact, Bernau and Huijsmans showed the following theorem.

Theorem 1. Let A and B be Archimedean vector lattices. Then every bilinear
map Ψ : A × A → B having the property (AF ) is symmetrical.

The following theorem is a generalization of the previous one.
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Theorem 2. Let A and B be Archimedean vector lattices, p ∈ {2, 3, . . .}, Ψ
a p-linear map from Ap into B having the property (AF ), and a permutation

σ ∈ S (p). Then Ψ
(

a1, .., ap

)

= Ψ
(

aσ(1), .., aσ(p)

)

for all a1, . . . , ap ∈ A.

Proof: Since S (p) is generated by transpositions, it suffices to prove that if i 6= j
then Ψ

(

.., ai, .., aj , ..
)

= Ψ
(

.., aj , .., ai, ..
)

for all a1, . . . , ap ∈ A.
We begin by the case 0 ≤ a1, . . . , ap. Let i 6= j ∈ {1, . . . , p} and define

Φ : A2 → B

(u, v) 7→ Ψ

(

a1, ..,
i
u, ..,

j
v, .., ap

)

.

Evidently, Φ is a bilinear map with the property (AF ), therefore it is symmetrical
(Theorem 1). Hence

Ψ
(

.., ai, .., aj , ..
)

= Φ
(

ai, aj

)

= Φ
(

aj , ai

)

= Ψ
(

.., aj , .., ai, ..
)

.

Assume now that a1, . . . , ap ∈ A (no necessarily positive). We denote by Dp

the set of all sequences ε =
(

ε1, . . . , εp

)

of length p consisting only of 1 and −1

and by Π (ε) the product ε1 . . . εp ∈ {−1, 1}. For every a ∈ A, put a(1) = a+ and

a(−1) = a−. Then Ψ
(

a1, .., ai, .., aj .., ap

)

= U − V with

U =
∑

ε=(ε1,...,εp)
Π(ε)=1

Ψ
(

a1(ε1), .., ai (εi) , .., aj

(

εj

)

, .., ap

(

εp

))

and
V =

∑

ε=(ε1,...,εp)
Π(ε)=−1

Ψ
(

a1(ε1), .., ai (εi) , .., aj

(

εj

)

, .., ap

(

εp

))

.

Similarly, Ψ
(

a1, .., aj , .., ai.., ap

)

= U ′ − V ′ with

U ′ =
∑

ε=(ε1,...,εp)
Π(ε)=1

Ψ
(

a1(ε1), .., aj

(

εj

)

, .., ai (εi) , .., ap

(

εp

))

and
V ′ =

∑

ε=(ε1,...,εp)
Π(ε)=−1

Ψ
(

a1(ε1), .., aj

(

εj

)

, .., ai (εi) , .., ap

(

εp

))

.

Using the previous case, we get U = U ′ and V = V ′, which gives the desired
result. �

The previous theorem allows to prove the following proposition which will turn
out to be useful later.
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Proposition 1. Let A and B be Archimedean vector lattices, p ∈ {2, 3, . . .}, Ψ a
p-linear map from Ap into B having the property (AF ), and π an orthomorphism
on A. Then, for every i 6= j ∈ {1, . . . , p}

Ψ
(

a1, .., π (ai) , .., aj , .., ap

)

= Ψ
(

a1, .., ai, .., π
(

aj

)

, .., ap

)

for all a1, . . . , ap ∈ A.

Proof: It suffices to prove this result for 0 ≤ π. Then let i 6= j ∈ {1, . . . , p} and
define

Φ : Ap → B
(

u1, .., up

)

7→ Ψ
(

u1, .., π (ui) , .., up

)

.

It is straightforward to show that Φ is a p-linear map with the property (AF ).
Consider now the transposition τ = (i, j). Applying Theorem 2 to Φ, we obtain

Φ
(

a1, .., ap

)

= Φ
(

aτ(1), .., aτ(p)

)

. Hence, again by Theorem 2 applied to Ψ,

Ψ
(

a1, .., π (ai) , .., aj , .., ap

)

= Ψ
(

a1, .., ai, .., π
(

aj

)

, .., ap

)

as required. �

It is shown by Beukers and Huijsmans [3; Theorem 5] that if A is a uniformly
complete semiprime f -algebra and F ∈ R

+ [X1, . . . , Xn] a homogeneous polyno-
mial of degree p ∈ N then, for all a1, . . . , an ∈ A+, there exists (unique) 0 ≤ a ∈ A
such that ap = F (a1, . . . , an). At the end of this section we will show that this
result subsists in the case of uniformly complete almost f -algebras (evidently, we
lose uniqueness). In order to hit this mark, we need the following proposition.

Proposition 2. Let A be a uniformly complete almost f -algebra and a natural
number p ≥ 2. Then

(i) for every 0 ≤ a1,.., ap ∈ A, there exists 0 ≤ u ∈ A such that up = a1 . . . ap;

(ii) for every 0 ≤ a, b ∈ A, there exists 0 ≤ u ∈ A such that up = ap + bp.

Proof: (i) Let 0 ≤ a1,.., ap ∈ A and put e = a1 + · · ·+ ap. Consider

Ψ : (Ae)
p → A

(

u1, .., up

)

7→ u1 . . . up.

Obviously, Ψ is a p-linear mapping with the property (AF ). Moreover, for ev-
ery k ∈ {1, . . . , p}, there exists 0 ≤ πk ∈ Orth(Ae) such that ak = πk(e) ([4;
Theorem 2.6]). Hence

a1 . . . ap = Ψ
(

a1, . . . , ap

)

= Ψ
(

π1 (e) , .., πp (e)
)

= Ψ
(

e, ..,
(

π1..πp

)

(e)
)
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(where we use Proposition 1). Now, applying [3; Theorem 5] to Orth(Ae) which
is a uniformly complete f -algebra with unit (therefore semiprime), there exists a
positive orthomorphism π on Ae such that πp = π1..πp. Consequently

a1 . . . ap = Ψ(e, .., π
p (e))

= Ψ (π (e) , .., π (e))

= π (e)p .

This gives the desired result.
The second assertion is obtained likewise. �

Now, we will state the main result of this section which is a simple inference
of the previous proposition.

Theorem 3 ([3; Theorem 5]). Let A be a uniformly complete almost f -algebra,
a natural number p ∈ {1, 2, . . .}, and a homogeneous polynomial F of degree p in
R
+ [X1, . . . , Xn]. Then, for every a1, . . . , an ∈ A+, there exists 0 ≤ a ∈ A such
that ap = F (a1, . . . , an).

3. The l-algebra ΠP (A)

The main topic of this section is to investigate order and algebra structures
of the set Πp(A) where A is a uniformly complete almost f -algebra and p ∈
{2, 3, . . .}.
In the next theorem we will show that if p ≥ 3 then Πp(A) is a vector lattice

under the ordering inherited from A.

Theorem 4. Let A be a uniformly complete almost f -algebra and p ∈ {3, 4, . . .}.
Then Πp (A) is a vector lattice under the ordering inherited from A with Σp (A)
as positive cone in its own right with the following supremum and infimum

ap ∧p bp = (a ∧ b)p and ap ∨p bp = (a ∨ b)p for all 0 ≤ a, b ∈ A.

Proof: At first, we prove that Πp (A) is an order vector subspace of A with

Πp (A)
+ = Σp (A). It is a straight deduction from Proposition 2(ii) that Σp (A)

is a positive cone in A. Therefore Σp (A)− Σp (A) is an order vector subspace of

A with
(

Σp (A)− Σp (A)
)+
= Σp (A).

Let 0 ≤ a, b ∈ A. We have ap − bp = (a − b)
(

∑p−1
k=0 akbp−1−k

)

. Consider

F (X, Y ) =
∑p−1

k=0XkY p−1−k; F is a homogeneous polynomial of degree p − 1

in R
+ [X, Y ]. Hence, by Theorem 3, there exists 0 ≤ u ∈ A such that up−1 =

∑p−1
k=0 akbp−1−k . Therefore ap − bp = up−1 (a − b) which implies that Σp (A) −

Σp (A) ⊂ Πp (A).
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Conversely, let a1, . . . ap ∈ A and keep the same notations as previously used
in the proof of Theorem 2. We get

a1 . . . ap =
(

a+1 − a−1
)

. . .
(

a+p − a−p
)

=
∑

ε=(ε1,...,εp)
Π(ε)=1

a1(ε1) . . . ap

(

εp

)

−
∑

ε=(ε1,...,εp)
Π(ε)=−1

u1(ε1) . . . up

(

εp

)

.

Moreover, by Proposition 2(i), for every ε =
(

ε1, . . . , εp

)

∈ Dp, there exists

a (ε) ∈ A+ such that a (ε)p = a1(ε1) . . . ap

(

εp

)

. Therefore

a1 . . . ap =
∑

ε,Π(ε)=1

a(ε)p −
∑

ε,Π(ε)=−1

a(ε)p.

Put now n = Card
{

ε ∈ Dp; Π (ε) = 1
}

and R (X1, . . . , Xn) =
∑n

k=1Xp
k
. Since

R is a homogeneous polynomial of degree p in R
+ [X1, . . . , Xn], there exists 0 ≤

u, v ∈ A such that

up =
∑

ε,Π(ε)=1

a(ε)p and vp =
∑

ε,Π(ε)=−1

a(ε)p.

Hence Πp (A) ⊂ Σp (A)−Σp (A) and thus Πp (A) = Σp (A)−Σp (A). We deduce

that Πp (A) is an order vector subspace of A such that Πp (A)
+ = Σp (A).

Now, let a, b, c ∈ A+. The inequalities (a ∨ b)p ≥ ap and (a ∨ b)p ≥ bp being
clear, assume that cp ≥ ap and cp ≥ bp. Therefore [c]p ≥ [a]p and [c]p ≥ [b]p in
A/N (A) which is a semiprime f -algebra. Then, by [3; Proposition 2], [c] ≥ [a]

and [c] ≥ [b]. Hence [c − a] ≥ 0, [c − b] ≥ 0 and thus (c − a)− , (c − b)− ∈ N (A).

Since N (A) is an o-ideal, we get (c − (a ∨ b))− = (c − a)− ∨ (c − b)− ∈ N (A).
This implies that

(c − (a ∨ b))−
( p−1

∑

k=0

ck (a ∨ b)p−1−k

)

= 0,

and thus

cp − (a ∨ b)p = (c − (a ∨ b))

( p−1
∑

k=0

ck (a ∨ b)p−1−k

)

= (c − (a ∨ b))+
( p−1

∑

k=0

ck (a ∨ b)p−1−k

)

.
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Finally cp ≥ (a ∨ b)p. Therefore sup{ap, bp} exists in Πp(A) and satisfies

sup{ap, bp} = ap ∨p bp = (a ∨ b)p .

Analogously, inf{ap, bp} exists in Πp(A) and satisfies

inf{ap, bp} = ap ∧p bp = (a ∧ b)p .

We conclude that Πp(A) is a vector lattice. �

The next example shows that the previous result need not be true in the case
p = 2.

Example 1. Consider A = C ([0, 1]) with the pointwise addition, scalar multi-
plication and partial ordering. For f, g ∈ A, define

(f ∗ g) (x) =











0
(

0 ≤ x ≤ 1
2

)

∫ x− 1
2

0
f(s)g(s) ds

(

1
2 < x ≤ 1

)

.

A straightforward computation shows that A is a uniformly complete almost f -
algebra under the multiplication ∗ and that h ∈ Π2 (A) if and only if h(x) = 0

for all x ∈ [0, 12 ] and the restriction of h to [12 , 1] belongs to C1
(

[12 , 1]
)

. Hence

Π2 (A) cannot be a vector lattice under the order inherited from A.

It will be shown in the next proposition that if w = a1 . . . ap ∈ Πp(A) and if

the absolute value of w in Πp(A) is denoted by |w|p then |w|p = |a1| . . .
∣

∣ap

∣

∣. In

order to prove this equality, we state the following lemma.

Lemma 1. Let A be an uniformly complete almost f -algebra, a natural number
p ≥ 2 and u, v ∈ A such that u ∧ v = 0. Then (apu) ∧p+1 (b

pv) = 0 in Πp+1 (A)
for all 0 ≤ a, b ∈ A.

Proof: Using Proposition 2(i), there exists 0 ≤ x, y ∈ A such that xp+1 =
apu and yp+1 = bpv. Moreover u ∧ v = 0 implies [u] ∧ [v] = 0 in A/N (A).
Since A/N (A) is an f -algebra, we obtain ([a]p [u]) ∧ ([b]p [v]) = 0. Hence, by [3;
Proposition 1]

([x] ∧ [y])p+1 = [x]p+1 ∧ [y]p+1

=
[

xp+1
]

∧
[

yp+1
]

= [apu ] ∧ [bpv]

= ([a]p [u]) ∧ ([b]p [v]) = 0.

By the fact that A/N (A) is semiprime, we get [x ∧ y] = [x] ∧ [y] = 0. Therefore

x ∧ y ∈ N (A) and (x ∧ y)p+1 = 0 (because p ≥ 2). We conclude that (apu) ∧p+1

(bpv) = xp+1 ∧p+1 yp+1 = (x ∧ y)p+1 = 0.
The proof is complete. �
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Proposition 3. Let A be a uniformly complete almost f -algebra, a natural num-
ber p ≥ 3 and w = a1 . . . ap in the vector lattice Πp(A). Then |w|p = |a1| . . .

∣

∣ap

∣

∣.

Proof: We will keep the same notations as already used in the proof of Theo-
rem 2. Then

a1 . . . ap =
(

a+1 − a−1
)

. . .
(

a+p − a−p
)

= U − V

where
U =

∑

ε=(ε1,...,εp)
Π(ε)=1

a1(ε1) . . . ap

(

εp

)

and
V =

∑

ε=(ε1,...,εp)
Π(ε)=−1

a1(ε1) . . . ap

(

εp

)

.

Let ε =
(

ε1, . . . , εp

)

, ε′ =
(

ε′1, . . . , ε
′
p

)

∈ Dp such that ε 6= ε′. Without restriction,

assume that ε1 6= ε′1. Hence a1 (ε1) ∧ a1
(

ε′1
)

= 0. By Proposition 2(i) and

Lemma 1,
(

a1(ε1) . . . ap

(

εp

))

∧p

(

a1(ε
′
1) . . . ap

(

ε′p
))

= 0. We infer that U∧pV = 0.

Therefore U =
(

a1 . . . ap

)+
and V =

(

a1 . . . ap

)−
in the vector lattice Πp(A).

Consequently
∣

∣a1 . . . ap

∣

∣

p
= U + V = |a1| . . .

∣

∣ap

∣

∣ as required. �

At this point, we will show that if A is a uniformly complete almost f -algebra
and p ≥ 3 then Πp(A) is uniformly complete. To this effect, we need the following
lemma.

Lemma 2. Let A be an almost f -algebra and natural numbers n, m, p such that
p ≥ 3, m 6= 0 and n + m = p. Then (a+ x)n b1 . . . bm = anb1 . . . bm for all

a, b1, . . . , bm ∈ A+ and x ∈ N (A).

Proof: The method of proof is by induction on n.
The case n = 0 being clear, suppose that (a+ x)n b1 . . . bm = anb1 . . . bm for all

natural numbers n, m, p such that p ≥ 3, m 6= 0 and n+m = p; a, b1, . . . , bm ∈ A+

and x ∈ N (A).
Give natural numbers n, m, p such that p ≥ 3, m 6= 0 and n + 1 + m = p,

a, b1, . . . , bm ∈ A+ and x ∈ N (A). Then

(a+ x)n+1 b1 . . . bm = (a+ x) (a+ x)n b1 . . . bm

= a (a+ x)n b1 . . . bm + x (a+ x)n b1 . . . bm

= a (a+ x)n b1 . . . bm + 0,

(where we use that n+m = p− 1). It follows from the induction hypothesis that

a (a+ x)n b1 . . . bm = aanb1 . . . bm

= an+1b1 . . . bm,

which completes the induction step. �
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Theorem 5. Let A be a uniformly complete almost f -algebra and a natural
number p ≥ 3. Then the vector lattice Πp(A) is uniformly complete.

Proof: Let 0 ≤ u ∈ A and (Xn)
∞
n=1 a up-uniform Cauchy sequence in Πp(A).

According to the Birkoff inequality [7; Theorem 12.4], we can suppose that 0 ≤ Xn

in Πp (A) for all n ∈ {1, 2, . . .}. Therefore, for every n ∈ {1, 2, . . . }, there exists

0 ≤ an ∈ A such that Xn = a
p
n. Observe that for every W ∈ Πp(A), |W | ≤ |W |p.

Thus
(

a
p
n

)∞
n=1 a up-uniform Cauchy sequence in A and then

([

a
p
n

])∞
n=1 is a [u]

p-

uniform Cauchy sequence in A/N (A). Since A/N (A) is semiprime, ([an])
∞
n=1 is

an [u]-uniform Cauchy sequence in A/N (A) ([3; Corollary 3]). Moreover,A/N (A)
is uniformly complete. Then there exists 0 ≤ a ∈ A such that ([an])

∞
n=1 converge

[u]-uniformly to [a] in A/N (A). Let 0 ≤ ε ≤ 1. There exists Nε ∈ {1, 2, . . .} such
that |[an]− [a]| ≤ ε [u] for all n ≥ Nε. Hence |[an − a]| ≤ [εu]. Using [7; Theorem
59.1], there exists x ∈ N (A) such that |an − a − x| ≤ εu (note that x depends on
ε and n). Therefore

(∗) 0 ≤ an ≤ εu+ |a+ x| .

Furthermore

|ap
n − ap|p =

∣

∣

∣

∣

(an − a)

p−1
∑

k=1

ak
nap−k−1

∣

∣

∣

∣

p

=

∣

∣

∣

∣

(an − a − x)

p−1
∑

k=1

ak
nap−k−1

∣

∣

∣

∣

p

.

Hence, by Proposition 3 and (∗)

|ap
n − ap|p = |an − a − x|

p−1
∑

k=1

ak
nap−k−1

≤ εu

p−1
∑

k=1

(εu+ |a+ x|)k ap−k−1

= ε

p−1
∑

k=1

k
∑

s=0

εsus+1 (|a+ x|)k−s ap−k−1

= ε

p−1
∑

k=1

k
∑

s=0

εs
∣

∣

∣us+1 (a+ x)k−s ap−k−1
∣

∣

∣

p
.
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Then, by Lemma 2

|ap
n − ap|p ≤ ε

p−1
∑

k=1

k
∑

s=0

εsus+1ak−sap−k−1

= ε

p−1
∑

k=1

(εu+ a)k uap−k−1

≤ ε

(

u

p−1
∑

k=1

(u+ a)k ap−k−1
)

= ε ((u+ a)p − ap) ,

which completes the proof. �

Generally, Πp (A) (p ≥ 3) needs not be a vector sublattice of A as it is shown
in the following example.

Example 2. Take A = C ([−1, 1]) with the pointwise addition, scalar multipli-
cation and partial ordering, and define ω ∈ A by

̟ (x) =

{

−x (−1 ≤ x ≤ 0)

0 (0 ≤ x ≤ 1)
.

For f, g ∈ A, define

(f ∗ g) (x) =







̟ (x) f (x) g (x) (−1 ≤ x ≤ 0)
∫ 0

−x
f(s)g(s) ds (0 ≤ x ≤ 1)

.

A straightforward computation shows that A is a uniformly complete almost f-
algebra under the multiplication ∗. Define α ∈ A by

α (x) = 2x+ 1 for all x ∈ [−1, 1].

By a simple calculation we get

|α ∗ α ∗ α| (1) =
1

10
6= |α ∗ α ∗ α|3 (1) = (|α| ∗ |α| ∗ |α|) (1) =

1

8
.

Assume now that A is, in addition, a d-algebra (i.e. A is a uniformly complete
commutative d-algebra), then the situation improves. In this case Πp(A) is a
vector sublattice of A. In order to prove this result, we need the following propo-
sition which is a generalization of [3; Proposition 1] to the case of commutative
d-algebras.
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Proposition 4 ([3; Proposition 1]). Let A be a commutative d-algebra and p ∈
{1, 2, . . .}. Then

(a ∨ b)p = ap ∨ bp and (a ∧ b)p = ap ∧ bp

for all a, b ∈ A+.

Proof: The case p = 1 being evident, assume that p ≥ 2. We have

0 ≤ ap ∧ bp − (a ∧ b)p

= (ap − (a ∧ b)p) ∧ (bp − (a ∧ b)p) .

Observe now that

0 ≤ ap − (a ∧ b)p

= (a − (a ∧ b))

( p−1
∑

k=0

ak (a ∧ b)p−1−k

)

≤ p (a+ b)p−1 (a − (a ∧ b)) .

Similarly

0 ≤ bp − (a ∧ b)p

≤ p (a+ b)p−1 (b − (a ∧ b)) .

Hence

0 ≤ ap ∧ bp − (a ∧ b)p

≤ p2 (a+ b)p−1 {(a − (a ∧ b)) ∧ (b − (a ∧ b))} = 0.

Analogously for the supremum. �

Corollary 1. Let A be a uniformly complete commutative d-algebra and a nat-
ural number p ≥ 3. Then Πp (A) is a uniformly complete vector sublattice of A.

Now, we will show that if A is a uniformly complete almost f -algebra and
p ∈ {2, 3, . . .} then Πp(A) is a semiprime f -algebra under the multiplication
inherited from A.

Theorem 6. Let A be a uniformly complete almost f -algebra and a natural
number p ≥ 3. Then Πp (A) is a semiprime f -algebra under the multiplication
inherited from A.

Proof: Obviously, Πp (A) is an l-algebra under the multiplication inherited
from A.
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Let 0 ≤ a, b ∈ A such that ap ∧p bp = 0. Hence (a ∧ b)p = 0 and thus
a ∧ b ∈ N (A). Moreover, by [1; Proposition 1.0] or [2; Proposition 1.13],

ab = (a ∧ b) (a ∨ b) .

We get

apbp = (ab)p

= (a ∧ b) (a ∨ b)
[

(ab)p−2
]

= 0.

Thus, Πp(A) is an almost f -algebra. Therefore, it suffices to show that it is

semiprime. Let 0 ≤ a ∈ A such that ap ∈ N
(

Πp(A)
)

. There exists n ∈ {1, 2, . . .}
such that

(ap)n = apn = 0.

As a consequence a ∈ N(A). Since p ≥ 3, we obtain ap = 0 and thus N
(

Πp(A)
)

=
{0} as required. �

Corollary 2. Let A be a uniformly complete commutative d-algebra and a natu-
ral number p ≥ 3. Then Πp (A) is a uniformly complete semiprime sub f -algebra
of A.

Note that if A is a uniformly complete commutative d-algebra then Π2(A) is a
sub f -algebra of A. Indeed, it is shown in [4; Corollary 3.7] that Π2(A) is a sub
d-algebra of A. Moreover, if a, b, c ∈ A+ such that a2 ∧ b2 = 0 then

0 ≤
(

c2a2
)

∧ b2 = ((ca) ∧ b)2 ≤ cab = c (a ∨ b) (a ∧ b) .

Now (a ∧ b)2 = a2 ∧ b2 = 0. This implies that a ∧ b ∈ N (A) and thus
c (a ∨ b) (a ∧ b) = 0. Finally

(

c2a2
)

∧ b2 = 0. Therefore Π2(A) is an f -algebra,
but not necessarily semiprime as it is shown in the following example.

Example 3. Let A be the coordinatewise ordered space R
3 with the following

multiplication defined by:




a
b
c



 ·





a′

b′

c′



 =





cc′

bb′

0



 .

It is clear that A is a uniformly complete commutative d-algebra and

Π2 (A) =











x
y
0



 ; x, y ∈ R







.

Obviously, Π2(A) is a sub f -algebra of A. However,

(

1
0
0

)2

= 0 and thus Π2(A)

is not semiprime.

At last, we give the following corollary.
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Corollary 3. Let A be a uniformly complete f -algebra and a natural number
p ≥ 2. Then Πp(A) is a uniformly complete semiprime sub f -algebra of A.

Proof: It is shown in [4; Corollary 3.7] that Π2 (A) is a semiprime sub f -algebra
of A. Furthermore, the “uniformly completion” property can be obtained using
the same method of Theorem 5.
The case p ≥ 3 is an immediate inference from the Theorems 5 and 6. �
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