A note on copies of c_0 in spaces of weak* measurable functions

J.C. FERRANDO

Abstract. If (Ω, Σ, μ) is a finite measure space and X a Banach space, in this note we show that $L^1_{w^*}(\mu, X^*)$, the Banach space of all classes of weak^{*} equivalent X^{*}-valued weak^{*} measurable functions f defined on Ω such that $||f(\omega)|| \leq g(\omega)$ a.e. for some $g \in L_1(\mu)$ equipped with its usual norm, contains a copy of c_0 if and only if X^{*} contains a copy of c_0 .

Keywords: weak* measurable function, copy of c_0 , copy of ℓ_1 Classification: 46G10, 46E40

1. Preliminaries

Throughout this paper (Ω, Σ, μ) will be a complete finite measure space and X a real or complex Banach space. We denote by $\mathcal{L}_{w^*}^p(\mu, X^*)$, $1 \leq p \leq \infty$, the linear space over \mathbb{K} of all weak* measurable functions $f: \Omega \to X^*$ for which there exists a scalar function $g \in \mathcal{L}_p(\mu)$ such that $||f(\omega)|| \leq g(\omega)$ for μ -almost all $\omega \in \Omega$, whereas $L_{w^*}^p(\mu, X^*)$ stands for the quotient space of $\mathcal{L}_{w^*}^p(\mu, X^*)$ via the equivalence relation \sim^* defined by $f_1 \sim^* f_2$ whenever $f_1() x \sim f_2() x$ for each $x \in X$ (here \sim designs the usual equivalence relation in $\mathcal{L}_p(\mu)$). The space $L_{w^*}^p(\mu, X^*)$ is a Banach space when equipped with the norm $\left\| \hat{f} \right\|_p = \inf \|g\|_{L_p(\mu)}$, the infimum taken over all those functions $g \in \mathcal{L}_p(\mu)$ for which there is some $f \in \hat{f}$ such that $\|f(\omega)\| \leq g(\omega)$ for μ -almost all $\omega \in \Omega$. It can be shown that there is always some $h \in \hat{f}$ such that $\|h()\| \in \mathcal{L}_p(\mu)$ and $\|\hat{f}\|_p = \|\|h()\|\|_{L_p(\mu)}$. We identify $L_p(\mu, X)^*$ with $L_{w^*}^q(\mu, X^*)$, where $1 \leq p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, by means of the linear isometry $T: L_{w^*}^q(\mu, X^*) \to L_p(\mu, X)^*$ defined by $(T\hat{f})g = \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu(\omega)$ for every $f \in \hat{f}$. A study of $L_{w^*}^p(\mu, X^*)$ coincides with the space of all weak* measurable functions $f: \Omega \to X^*$ such that $\|f()\| \in \mathcal{L}_p(\mu)$. In this case $L_{w^*}^p(\mu, X^*)$ is the quotient of $\mathcal{L}_{w^*}^p(\mu, X^*)$ via the usual equivalence relation, so $\|\hat{f}\|_p = \|\|f()\|\|_{L_p(\mu)}$ for each $f \in \hat{f}$. We denote by $cabv(\Sigma, X^*)$ the Banach space of all X^* -valued countably additive measures F of bounded

This paper has been partially supported by DGESIC grant PB97-0342.

variation defined in Σ , equipped with the variation norm $|F| = |F|(\Omega)$. A result of Kwapień [7] answering a question of Hoffmann-Jørgensen [5] shows that $L_p(\mu, X)$, $1 \leq p < \infty$, contains a copy of c_0 if and only if X does. Since (as Mendoza has proved [8]) $L_p(\mu, X)$, $1 , contains a complemented copy of <math>\ell_1$ if and only if X contains a complemented copy of ℓ_1 , then $L_{w^*}^p(\mu, X^*)$, 1 , contains $a copy of <math>c_0$ if and only if X^* does. In this note we show that this is also true for p = 1, i.e., that $L_{w^*}^1(\mu, X^*)$ contains a copy of c_0 if and only if X^* does.

2. Copies of c_0 in $L^1_{w^*}(\mu, X^*)$

If X is a separable Banach space, our statement is an easy consequence of an averaging theorem for c_0 -sequences due to Bourgain [1] (see also [2, Lemma 2.1.2]). The general case will be derived from Theorem 2.2 below, otherwise well known.

Theorem 2.1. Assume that X is a separable Banach space. If $L^1_{w^*}(\mu, X^*)$ contains a copy of c_0 , then X^* contains a copy of c_0 .

PROOF: Let $\{\widehat{f}_n\}$ be a normalized basic sequence in $L^1_{w^*}(\mu, X^*)$ equivalent to the unit vector basis of c_0 . Then $\int_{\Omega} ||f_n(\omega)|| d\mu(\omega) = 1$ for each $n \in \mathbb{N}$ and there is K > 0 such that

(2.1)
$$\sup_{n \in \mathbb{N}} \int_{\Omega} \left\| \sum_{i=1}^{n} \varepsilon_{i} f_{i}(\omega) \right\| d\mu(\omega) < K$$

for each $f_i \in \widehat{f_i}$, $\varepsilon_i \in \{-1, 1\}$ and $i \in \mathbb{N}$. Setting

$$A_{1} = \left\{ \omega \in \Omega : \overline{\lim}_{n \to \infty} \left\| f_{n} \left(\omega \right) \right\| > 0 \right\},\$$

we claim that $\mu(A_1) > 0$. Otherwise, $\lim_{n\to\infty} ||f_n(\omega)|| = 0$ for almost all $\omega \in \Omega$ and since the sequence $\{||f_n()||\}$ is uniformly integrable (this is essentially contained in the proof of [2, Theorem 2.1.1]), it follows from Vitali's lemma [4, IV.10.9] that $\lim_{n\to\infty} \int_{\Omega} ||f_n(\omega)|| d\mu(\omega) = 0$, a contradiction.

Denoting by Δ the product space $\{-1,1\}^{\mathbb{N}}$, Γ the σ -algebra of subsets of Δ generated by the *n*-cylinders of Δ , $n = 1, 2, \ldots$, and ν the probability measure $\otimes_{i=1}^{\infty}\nu_i$ on Γ , where $\nu_i : 2^{\{-1,1\}} \to [0,1]$ satisfies that $\nu_i(\emptyset) = 0$, $\nu_i(\{-1\}) = \nu_i(\{1\}) = 1/2$ and $\nu_i(\{-1,1\}) = 1$ for each $i \in \mathbb{N}$, we may consider the μ measurable map $h_n : \Omega \to \mathbb{R}$ defined by $h_n(\omega) = \int_{\Delta} \|\sum_{i=1}^n \varepsilon_i f_i(\omega)\| d\nu(\varepsilon)$ for $n = 1, 2, \ldots$. Since $\{h_n\}$ is a monotone increasing sequence of non negative functions, (2.1) and Fubini's theorem yield $\sup_{n \in \mathbb{N}} \int_{\Omega} h_n(\omega) d\mu(\omega) \leq K$. Hence, by the monotone convergence theorem there exists a μ -null set $A_2 \in \Sigma$ such that $\sup_{n \in \mathbb{N}} h_n(\omega) < \infty$ for each $\omega \in \Omega - A_2$. Considering the set $A := A_1 \cap (\Omega - A_2)$, it is obvious that $\mu(A) > 0$, hence $A \neq \emptyset$. Moreover, $\overline{\lim_{n\to\infty}} \|f_n(\omega)\| > 0$ and $\sup_{n \in \mathbb{N}} \int_{\Delta} \|\sum_{i=1}^n \varepsilon_i f_i(\omega)\| d\nu(\varepsilon) < \infty$ for each $\omega \in A$. Choose $\omega_0 \in A$ and a strictly increasing sequence of positive integers $\{n_i\}$ such that $\inf_{i\in\mathbb{N}} \|f_{n_i}(\omega_0)\| > 0$. Setting $x_i^* := f_{n_i}(\omega_0)$ for each $i \in \mathbb{N}$ and using the properties of the measure space we conclude that $\sup_{n\in\mathbb{N}} \int_{\Delta} \left\|\sum_{i=1}^n \varepsilon_i x_i^*\right\| d\nu(\varepsilon) < \infty$. According to the aforementioned theorem of Bourgain, there is a subsequence $\{z_n^*\}$ of $\{x_n^*\}$ which is a basic sequence in X^* equivalent to the unit vector basis of c_0 .

Theorem 2.2. If X is an arbitrary Banach space, then $L^1_{w^*}(\mu, X^*)$ is linearly isometric to a subspace of $cabv(\Sigma, X^*)$.

PROOF: Consider the natural map $T : L^1_{w^*}(\mu, X^*) \to cabv(\Sigma, X^*)$ defined by $T\widehat{f} = F$, where

$$F(A) x = \int_{A} f(\omega) x d\mu(\omega)$$

for each $A \in \Sigma$ and $x \in X$. It is easy to check that F is an X^* -valued μ -continuous countably additive measure, since if $f \in \widehat{f}$ verifies that $||f(\omega)|| \leq g(\omega)$ for μ almost all $\omega \in \Omega$ and some $g \in L_1(\mu)$, then $||F(A)|| \leq ||\chi_A g||_{L_1(\mu)}$ for each $A \in \Sigma$. If $\pi(A)$ designs the class of all finite partitions of $A \in \Sigma$ by elements of Σ , then

$$\sum_{E \in \pi(A)} \|F(E)\| \le \sum_{E \in \pi(A)} \int_{E} g(\omega) \ d\mu(\omega) = \|\chi_{A}g\|_{L_{1}(\mu)} \le \|g\|_{L_{1}(\mu)}$$

which proves that $F \in cabv\left(\Sigma, X^*\right)$ and $|F| \leq \left\|\widehat{f}\right\|_1$.

According to [2, Theorem 1.5.3] there exists a weak* measurable function ψ : $\Omega \to X^*$ satisfying that $(\omega \to ||\psi(\omega)||) \in \mathcal{L}_1(\mu)$, $F(A) x = \int_A \psi(\omega) x \, d\mu(\omega)$ for all $A \in \Sigma$ and $x \in X$, and $|F|(A) = \int_A ||\psi(\omega)|| \, d\mu(\omega)$. Clearly $\psi \in \mathcal{L}^1_{w^*}(\mu, X^*)$ and $\psi \sim^* f$. Consequently,

$$\left\| \widehat{f} \right\|_{1} \leq \int_{\Omega} \left\| \psi\left(\omega \right) \right\| \, d\mu\left(\omega \right) = |F|$$

This shows that $\left|T\hat{f}\right| = \left\|\hat{f}\right\|_{1}$, which concludes the proof.

Corollary 2.3. If $L^1_{w^*}(\mu, X^*)$ contains a copy of c_0 , then X^* contains a copy of c_0 .

PROOF: If $L^1_{w^*}(\mu, X^*)$ contains a copy of c_0 , by the previous theorem c_0 embeds into $cabv(\Sigma, X^*)$. So X^* contains a copy of c_0 by virtue of E. and P. Saab's theorem [9] ([2, Theorem 3.1.3]).

Acknowledgment. The author is indebted to the referee for his help in the proof of the nonseparable case.

J.C. Ferrando

References

- [1] Bourgain J., An averaging result for co-sequences, Bull. Soc. Math. Belg. 30 (1978), 83–87.
- [2] Cembranos P., Mendoza J., Banach Spaces of Vector-Valued Functions, Lecture Notes in Math. 1676, Springer, 1997.
- [3] Diestel J., Sequences and Series in Banach Spaces, GTM 92, Springer-Verlag, 1984.
- [4] Dunford N., Schwartz J.T., *Linear Operators. Part I*, John Wiley, Wiley Interscience, New York, 1988.
- Hoffmann-Jørgensen J., Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186.
- [6] Hu Z., Lin B.-L., Extremal structure of the unit ball of L^p(μ, X), J. Math. Anal. Appl. 200 (1996), 567–590.
- [7] Kwapień S., On Banach spaces containing c₀, Studia Math. **52** (1974), 187–188.
- [8] Mendoza J., Complemented copies of ℓ_1 in $L_p(\mu, X)$, Math. Proc. Camb. Phil. Soc. 111 (1992), 531–534.
- [9] Saab E., Saab P., A stability property of a class of Banach spaces not containing a complemented copy of l₁, Proc. Amer. Math. Soc. 84 (1982), 44–46.

Depto. Estadística y Matemática Aplicada, Universidad Miguel Hernández, Avda. Ferrocarril, s/n. 03202 Elche (Alicante), Spain

E-mail: jc.ferrando@umh.es

(Received April 3, 2000)