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On quasigroups with the left loop property

A. Nourou Issa
∗

Abstract. Some properties of quasigroups with the left loop property are investigated.
In loops we point out that the left loop property is closely related to the left Bol identity
and the particular case of homogeneous loops is considered.
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1. Introduction

In [1] V.D. Belousov raised the following problem: which identities guarantee
that quasigroups possessing these identities are, in fact, loops? ([1, p. 217]. Note
that Belousov attributes this problem to I.E. Burmistrovich.) The results of
K. Kunen ([8], [9]) could be included in the context of solving this problem.
In this note we consider in quasigroups a special identity, the so-called left loop

property. Our investigations stem from the works of A.A. Ungar [15], [16], where
he showed the weight of the (left) loop property in Special Relativity and in the
loop-theoretical interpretation of weakly associative groups and gyrogroups (see
also [13], [14], [5]). In particular, he showed the usefulness of the left loop property
in solving the equation x.a = b in a given weakly associative group and thus such
an algebraic structure is endowed with a quasigroup structure and, hence, is a
loop.
Although the left loop property in an arbitrary quasigroup fails to imply that

this quasigroup is a loop (see Example 4.1), for some classes of quasigroups the
left loop property implies that these quasigroups are, in fact, loops (and by The-
orem 3.2 they are left Bol loops). It turns out that, from the standpoint of
Universal Algebra, the left loop property and its mirror (see Section 2) are cer-
tainly of interest. Indeed the left loop property in a left quasigroup implies that
such a quasigroup is a left loop and, likewise, the mirror of the left loop property
in a right quasigroup implies that such a quasigroup is a right loop (Theorem 2.3).
Therefore any quasigroup satisfying both the left loop property and its mirror is
a loop (Corollary 2.4). The situation of loops with the left loop property may
be summarized as follows: any loop with the left loop property is a left Bol loop
(Theorem 3.2).
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The present paper is organized as follows. In Section 2 we investigate the im-
pact of the left loop property and its mirror in arbitrary quasigroups and also
in some special types of quasigroups such as left or right inverse property quasi-
groups, totally symmetric or semisymmetric quasigroups, left or right alternative
quasigroups. Section 3 deals with loops with the left loop property. These loops
are left Bol loops and their connection with homogeneous loops is considered.
Finally in Section 4, we suggest some constructions of nonloop quasigroups that
have the left loop property but fail its mirror and conversely.

We resume the mirroring of identities (see [8], [9]) so that most of our state-
ments or proofs are related primarily to the left loop property; the mirror state-
ments ([8], [9]) then can be easily inferred.

2. The left loop property in quasigroups

We begin with some basic notions on quasigroups.

Let Q be a set. A system (Q, . , \, /) is called a quasigroup provided that each
of (Q, . ), (Q, \), (Q, /) is a groupoid and

a. (a\b) = b, a\(a. b) = b(1)

(a. b)/b = a, (a/b). b = a(2)

for every a, b in Q. A system (Q, . , \) such that each of (Q, . ), (Q, \) is a groupoid
and the identities (1) hold, is called a left quasigroup. Likewise a right quasigroup
is defined.

A quasigroup is also defined by means of left translations La : Q → Q, x 7→ a.x
and right translations Ra : Q → Q, y 7→ y . a, with a in Q: if La and Ra

are permutations of Q for all a in Q, then (Q, . ) is a quasigroup. Note that
a\b = L−1

a b and b/a = R−1
a b.

A left loop L is defined to be a left quasigroup with a right identity (i.e. an
element e ∈ L such that x. e = x, ∀x ∈ L), while a right loop R is a right
quasigroup with a left identity (i.e. an element e′ ∈ R such that e′ . y = y, ∀ y ∈ R).
A loop is a quasigroup with a two-sided identity element.

For further information on quasigroups and loops one may refer to [1], [3], [10].
In order to reduce the number of brackets, we shall use juxtaposition in place of
dot whenever applicable that is, for example, xy . z means (x. y). z.

For our purpose we make the following

Definition 2.1. A (left) quasigroup Q is called a left loop property (left) quasi-
group (LLP (left) quasigroup for short) if the identity

(3) (x. y)\(x. yz) = (xy . y)\(xy . yz) (left loop property (LLP))

holds for any x, y, z in Q.
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The identity (3) may be written as lx,yz = lx.y,yz, where la,b = L−1
a.b

LaLb are
the left inner mappings of Q. Beside (3), we shall consider its mirror in a (right)
quasigroup Q, that is

(4) (zy . yx)/(y . yx) = (zy . x)/(yx) (MLLP )

for all x, y, z in Q.

Definition 2.2. A (right) quasigroup in which the identity (4) holds is called a
MLLP (right) quasigroup.

The identity (4) may also be written as ry,xz = ry,y.xz, where ra,b = R−1
a.b

RbRa.
Instead of calling (4) the “right loop property” we prefer the term of “MLLP”,
where “M” stands for “mirror”, in order to avoid confusion with Ungar’s right
loop property that reads lx,yz = lx,y.xz.

Lemma 2.1. In a (left) quasigroup, the left loop property (LLP) is equivalent
to

(5) (x. (z\x)). y = x. (z\(x. y)).

Likewise, in a (right) quasigroup the mirror (4), i.e. MLLP, is equivalent to

(6) ((y . x)/z). x = y . ((x/z). x).

Proof: We prove the first equivalence.
Let u be the unique element defined by u = (x. y)\(x. yz). Then, from LLP, we
have u = (xy . y)\(xy . (x\(xy .u))) that is (xy . y)u = (xy). (x\(xy .u)). Further,
replacing y by x\v, we get (v . (x\v)). u = v . (x\(v . u)) which is (5) since u ranges
through the given quasigroup as x, y, z do (recall that lx,y are permutations).
Conversely, assume (5). Then replacing z\x by b, we have (zb. b). y =

(zb). (z\(zb. y)), i.e.

(7) y = (zb. b)\(zb. (z\(zb. y))).

Now let w be the unique element defined by w = b\(z\(zb. y)), then from (7) we
draw (z . b)\(z . bw) = (zb. b)\(zb. bw) so that we get LLP. �

Note that (5) and (6) are also mirrors of each other.
The identity (a. ba). c = a. (b. ac) in a quasigroup (Q, . ) is called the left Bol

identity. A quasigroup (Q, . ) is said to have the left inverse property if there exists

a permutation Jl : a 7→ al of Q such that al . ax = x for every x in Q. Likewise
(Q, . ) is said to have the right inverse property if there exists a permutation
Jr : a 7→ ar of Q such that xa. ar = x for every x in Q. If (Q, . ) has both the left
and right inverse properties, then (Q, . ) is said to have the inverse property.
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Corollary 2.2. Any LLP quasigroup with the left inverse property is a left Bol

quasigroup and any MLLP quasigroup with the right inverse property is a right

Bol quasigroup.

Proof: The left inverse property means that L−1
a = Laλ , where aλ is uniquely

defined by aλ . ax = x. Then the identity (5) can now be written as (x. zλx). y =

x. (zλ . xy) and one recognizes the left Bol identity. �

Bol quasigroups are studied by D.A. Robinson in [12], where he constructed
nonloop quasigroups that satisfy the right Bol identity but not the left one and
he showed that neither of the Bol identities implies that a quasigroup is a loop.
However, we recall that every quasigroup satisfying the right Bol identity has
a left identity ([8]. We note that this result is attributed to A.C. Choudhury;
see A.C. Choudhury, Quasigroups and Nonassociative Systems , I, Bull. Calcutta
Math. Soc., 40 (1948), 183–194). One also observes that the right and left Bol
identities are mirrors of each other. In this respect we point out the following

Theorem 2.3. Any LLP quasigroup has a right identity and, therefore, any LLP

left quasigroup is a left loop. A MLLP right quasigroup is a right loop.

Proof: Let Q be a LLP quasigroup and consider some fixed elements x and e in
Q such that x. e = x. Then, for any z in Q, x. (z\x) = x. (z\(x. e)) = (x. (z\x)). e
(by (5)). Next, let a be the unique element in Q defined by a = x. (z\x). Then
we get a = a. e. And since a ranges through Q as z does, we conclude that e is
a right identity in Q. If Q is a left quasigroup, then LLP implies that Q is a left
loop. �

The following corollary is obvious.
Corollary 2.4. Any quasigroup satisfying both LLP and MLLP is a loop. �

As in the corollary above, LLP (or MLLP) together with some additional con-
ditions in a given quasigroup turn this quasigroup into a loop. A quasigroup Q
is said to be semisymmetric if the identity y . xy = x (or xy .x = y) holds in Q.
A totally symmetric (TS) quasigroup is a commutative semisymmetric quasigroup.
The fundamental concepts on TS quasigroups could be found in [2]. A TS quasi-
group which is a loop is called a Steiner loop. There is a close relationship between
TS quasigroups and commutative Moufang loops ([6], [10]).

Theorem 2.5. Let Q be a LLP quasigroup. If Q is semisymmetric, then Q is
left alternative and hence, is a loop.

Proof: Consider LLP in a quasigroup Q. Then the semisymmetric property in
(5) implies (x.xz). y = x. (xy . z) (we observe that the semisymmetric property
y . xy = x means that xy = y\x). Now set z = e (where e is a right identity in Q)
in this equality and we get the left alternative law xx. y = x.xy in Q. But the left
alternative law in a quasigroup implies there is a left identity ([9, Lemma 2.2]).
Thus Q has a right and a left identity (they necessarily coincide) so that Q is a
loop. �
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We observe that MLLP also turns a semisymmetric quasigroup into a loop.

Theorem 2.6. Let Q be a LLP quasigroup. If Q is totally symmetric then Q is
a commutative Moufang loop of exponent 2 and is a Steiner loop.

Proof: Being totally symmetric, Q is commutative and has the inverse property
(indeed, the commutativity in the semisymmetric property y . xy = x implies
y . yx = x and xy . y = x so that we get the left and right inverse properties).
Therefore, by Corollary 2.2, Q turns out to be a commutative Moufang loop and
is of exponent 2 by the total symmetry, and also Q is Steiner. �

Theorem 2.7. Let Q be a LLP quasigroup. If Q is right alternative then the
equation (x. yy). z = xy . yz in Q implies that Q is a group.

Proof: The equation (x. yy). z = xy . yz implies that a quasigroup is a loop
([9, Theorem 3.2]). Then LLP (see (3)) together with the right alternative law
imply the associativity x. yz = xy . z in Q. Indeed, the right alternative law in (3)
implies (x. y)\(x. yz) = (x. yy)\(xy . yz) and thus (x. y)\(x. yz) = z. �

One notes that (x. yy). z = xy . yz is one of the Fenyves’ Bol-Moufang type
identities ([4, identity (32)]). In Section 4 we mention a result by K. Kunen
regarding the existence of a right alternative nonloop quasigroup and we point
out that such a quasigroup is also a LLP quasigroup.

3. The left loop property in loops

We observe in this section that the occurrence of LLP (or MLLP) in loops leads
to some well-known properties, one of the most important of which is the left (or
right) Bol identity. The statements below are related to LLP.

Lemma 3.1. Let Q be a LLP loop. Then

(i) Q has the left inverse property;
(ii) Q is left alternative.

Proof: Let 1 denote the identity of Q and let aλ ∈ Q be the unique element
defined by aλa = 1 for any a ∈ Q. In the left loop property (3), set x = yλ to

obtain yλ . yz = z, ∀ y, z ∈ Q, which proves (i). Next, for (ii), one needs only to
set x = 1 in (3). One also observes that (ii) is obtained by setting z = 1 in (5).

�
A (left) Bol loop is a loop that satisfies the (left) Bol identity. Bol loops are in-

vestigated by D.A. Robinson [11] (see also [1]). As a straightforward consequence
of the left inverse property in LLP loops we have the following

Theorem 3.2. Any LLP loop is a left Bol loop.

Proof: One needs only to apply Lemma 3.1 (i) and Corollary 2.2. �

The case of LLP loops that are homogeneous are particularly of interest in
the context of gyrogroups (For the concept of a gyrogroup one may refer to [16]).
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Homogeneous loops are defined to be loops with the left inverse property for which
the left inner mappings la,b are automorphisms for every a and b ([7]). In [5] we
pointed out that nongyrocommutative gyrogroups could be seen as homogeneous
loops with the left loop property. Therein ([5, Theorem 7]) we obtained that a
left inverse property loop that has the left loop property is a left Bol loop. Thus
the results of the present section (specifically Theorem 3.2) raise the redundancy
of the assumption of the left inverse property that we made in [5].

4. Examples

Here we construct some nonloop quasigroups with either LLP or MLLP.

Example 4.1. Let Z3 be the field of integers modulo 3. Then (Z3, ◦) with
x ◦ y = x + 2y is a nonloop quasigroup that satisfies the left loop property and
(Z3, ◦) is not a MLLP quasigroup.

Proof: Clearly (Z3, ◦) is a quasigroup. But (Z3, ◦) is not a loop since 0 is a
right identity for (Z3, ◦) but not a left identity. Next we define y\x = 2(x − y).
Then a straightforward computation shows that (Z3, ◦, \) is a LLP quasigroup by
Lemma 2.1. Defining x/y = x− 2y, one checks that (Z3, ◦, /) does not satisfy (6)
and hence (Z3, ◦) is not a MLLP quasigroup. �

With Example 4.1 in mind it is easy to construct a nonloop quasigroup that
satisfies MLLP (i.e. (6)) but not LLP. In fact we have the following statement
whose proof is just the “mirror” of the one of Example 4.1.

Example 4.2. Let Z3 be the field of integers modulo 3. Then (Z3, ⋆) with
x ⋆ y = 2x + y is a nonloop quasigroup that satisfies MLLP but (Z3, ⋆) is not a
LLP quasigroup.

Proof: (Z3, ⋆) is easily seen to be a quasigroup with 0 as its left but not right
identity. Defining x/y = 2(x − y) and y\x = x − 2y, we see that (Z3, ⋆) satisfies
(6) but fails (5). Thus, by Lemma 2.1, (Z3, ⋆) is a MLLP nonloop quasigroup
that is not LLP. �

Note that the quasigroups constructed in Examples 4.1 and 4.2 are unipotent ,
that is x2 = y2 for all x, y in Z3.
We observe that the constructions in Examples 4.1 and 4.2 above could be

generalized. Such a generalization produces a set of nonloop quasigroups satis-
fying either the left loop property or its mirror. We actually have the following
assertion whose proof is directly deduced from the ones of Examples 4.1 and 4.2.

Example 4.3. Let p be a prime, p > 2, and a, b some positive integers. Let
(Zp, . ) be a groupoid with the operation product defined by x. y = ax+ by. Then
for a = 1 and 1 < b < p, (Zp, . ) is a LLP nonloop quasigroup that is not MLLP
and for 1 < a < p and b = 1, (Zp, . ) is a MLLP nonloop quasigroup that is not
LLP. �

A nonloop quasigroup with the right alternative law (RALT) is constructed as
follows ([9, Lemma 2.3]): let (Z6, . ) be a groupoid with x.y = x+ f(y), where f
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is defined by f(0) = 0, f(1) = 4, f(2) = 5, f(3) = 3, f(4) = 1, f(5) = 2. Then
(Z6, . ) is the desired quasigroup. Next we define x\y = f(y−x) on (Z6, . ). Then
observing that f is its own inverse, we easily see that (Z6, . ) satisfies (5). Now,
since the right alternative law and the left alternative law (LALT) are mirrors of
each other, we deduce that the mirror of (Z6, . ) has both the properties (6) and
LALT. Thus, with our Lemma 2.1 in mind, we get the following

Example 4.4. There are nonloop quasigroups satisfying each of the pairs LLP-

RALT and MLLP-LALT.

�

Acknowledgment. The author wishes to thank the Organizing Committee of
the Conference LOOPS’99, held in Prague (Czech Republic) 27 July–1 August
1999. He is indebted to A.A. Ungar for his works on gyrogroups without which
the present paper would not have been possible. He also thanks the referee for
useful comments and suggestions.

References

[1] Belousov V.D., Foundations of the theory of quasigroups and loops (in Russian), Izdat.
Nauka, Moscow, 1967.

[2] Bruck R.H., Some results in the theory of quasigroups, Trans. Amer. Math. Soc. 55 (1944),
19–52.

[3] Bruck R.H., A Survey of Binary Systems, Springer-Verlag, Berlin-Gottingen-Heidelberg,
1958.

[4] Fenyves F., Extra loops II, Publ. Math. Debrecen 16 (1969), 187–192.
[5] Issa A.N., Gyrogroups and homogeneous loops, Reports Math. Phys. 44 (1999), no. 3,
345–357.

[6] Kepka T., Commutative Moufang loops and distributive Steiner quasigroups nilpotent of
class 3, Comment. Math. Univ. Carolinae 21 (1980), 355–370.

[7] Kikkawa M., Geometry of homogeneous Lie loops, Hiroshima Math. J. 5 (1975), 141–179.
[8] Kunen K., Moufang quasigroups, J. Algebra 183 (1996), 231–234.
[9] Kunen K., Quasigroups, loops, and associative laws, J. Algebra 185 (1996), 194–204.
[10] Pflugfelder H.O., Quasigroups and Loops: Introduction, Heldermann, Berlin, 1990.
[11] Robinson D.A., Bol loops, Trans. Amer. Math. Soc. 123 (1966), 341–354.
[12] Robinson D.A., Bol quasigroups, Publ. Math. Debrecen 19 (1972), 151–153.
[13] Sabinin L.V., On the gyrogroups of Ungar, Russian Math. Surveys 50 (1995), no. 5, 1095–

1096.
[14] Sabinin L.V., Mikheev P.O., On the law of composition of velocities in special relativity

theory, Russian Math. Surveys 48 (1993), no. 5, 183–185.
[15] Ungar A.A., Thomas rotation and the parametrization of the Lorentz transformation group,

Foundations Phys. Lett. 1 (1988), no. 1, 57–89.
[16] Ungar A.A., Thomas precession and its associated grouplike structure, Amer. J. Phys. 59

(1991), no. 9, 824–834.
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