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Projections from L(X, Y ) onto K(X, Y )

Kamil John

Abstract. Generalization of certain results in [Sap] and simplification of the proofs are
given. We observe e.g.: Let X and Y be Banach spaces such that X is weakly compactly
generated Asplund space and X∗ has the approximation property (respectively Y is
weakly compactly generated Asplund space and Y ∗ has the approximation property).
Suppose that L(X, Y ) 6= K(X, Y ) and let 1 < λ < 2. Then X (respectively Y ) can
be equivalently renormed so that any projection P of L(X, Y ) onto K(X, Y ) has the
sup-norm greater or equal to λ.
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Let K(X, Y ) (resp. L(X, Y )) denote the space of all compact (resp. bounded)
linear operators from the Banach space X to the Banach space Y . The question
whether K(X, Y ) is an uncomplemented subspace of L(X, Y ) whenever K(X, Y )
6= L(X, Y ) is long-standing ([AtWi], [Ku], [Th], [To], [ToWi]). The positive
answer was given e.g. if X or Y has unconditional basis ([DM], [Em1], [Fe1],
[Fe2], [J1], [Ka], [Jo], [Ru]). More generally the question has positive answer if
c0 ⊂ K(X, Y ) as it was independently shown in [Em2] and [Jo2]. In [EJ] it was
observed that under some geometric assumptions on the spaces X and Y there
are no norm one projections P from L(X, Y ) onto K(X, Y ).
An other step forward to the general solution was made in [Sap]. The author

using the notion of the Godun set (see Definition 2) proves e.g.:

(S) Suppose that 1 < λ < 2 and L(X, Y ) 6= K(X, Y ). If Y ∗ is separable and

has the approximation property then Y can be equivalently renormed so that any

projection P of L(X, Y ) onto K(X, Y ) has the sup-norm greater or equal to λ.

Saphar [Sap] actually proves more. He proves a general lemma (Lemma 2.2)
telling that if λ is in the Godun set G(E, M) of E relative to M ⊂ E∗∗ then any
projection P from M onto E has the sup norm ≥ λ. Next he shows that under
the assumptions of (S) we have λ ∈ G(K(X, Y ), L(X, Y )). The result (S) then
follows.
Our paper was inspired by these results of P.D. Saphar. We follow his ideas and
observe that his estimates of the norm of the projection P may be obtained very
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easily without the reference to the notion of the Godun set. Of course, the idea
(inequality (2) bellow) is contained in [Sap]: Suppose that P is a projection from a
space M ⊂ E∗∗ onto the space E and if an element T , ‖T ‖ = 1 from P−1(0) may
be w∗ approximated by elements Tα ∈ E in such a way that ‖T − λTα‖ ≤ ‖T ‖.
Then we obtain ‖λTα‖ = ‖PT − λPTα‖ ≤ ‖P‖. Now 1 = ‖T ‖ ≤ lim sup ‖Tα‖

because Tα
w∗

−→ T . We get immediately λ ≤ ‖P‖.
Moreover our simplification gives generalizations of certain results in [Sap]. We

prove e.g. the above mentioned result when the assumptions on Y are pushed to
the space X (Corollary 2). We also show that the norm of the projection P in
question is ≥ λ if X or Y is reflexive and has the approximation property. The
results concerning the Godun set namely that e.g. λ ∈ G(K(X, Y ), L(X, Y )) are
also possible in our cases (Remark 2).
All operators in this paper are linear and all Banach spaces are real. If Z is a Ba-
nach space we denote by IdZ the identity operator in Z. Following Kalton [Ka] we
will denote by w′ the linear topology on L(X, Y ) which is generated by the func-

tionals x∗∗⊗y∗ ∈ X∗∗⊗Y ∗. Thus Tα
w′

−→ T means that y∗∗(T ∗
αy∗)−→ y∗∗(T ∗y∗)

for all x∗∗ ∈ X∗∗ and all y∗ ∈ Y ∗. We will also use the following result due to
[Ka]:

(K) In K(X, Y ) coincides the w∗ convergence of sequences and the convergence

of sequences in the weak topology of the Banach space K(X, Y ).

Definition 1. Let us denote by Kλ the class of all Banach spaces Z such that
there is a net {kα} of compact operators in Z such that

(i) kα(z)−→ z weakly for all z ∈ Z

and

(ii) lim supα ‖IdZ − λkα‖ ≤ 1.

If moreover lim supα ‖kα‖ ≤ 1 we will speak about the class K1λ.

Evidently K1λ ⊂ Kλ.

Proposition 1. Let the Banach space X or the Banach space Y belong to Kλ
and suppose that L(X, Y ) 6= K(X, Y ). Then any projection P of L(X, Y ) onto
K(X, Y ) has the sup-norm greater or equal to λ.

Proof: Suppose that X ∈ Kλ and let {kα} ⊂ K(X) be the net of compact
operators in X satisfying (i) and (ii) from the Definition 1. Set Tα = Tkα.
Similarly we set Tα = kαT if Y ∈ Kλ and if {kα} ⊂ K(Y ) is the sequence of
compact operators in Y satisfying (i) and (ii) from the Definition 1.
For any ǫ > 0 and for suitable x ∈ X , ‖x‖ ≤ 1 and suitable y∗ ∈ Y ∗ ‖y‖ ≤ 1

we have ‖T ‖ ≤ y∗(Tx) + ǫ = lim y∗(Tαx) + ǫ ≤ lim inf ‖Tα‖+ ǫ. The ǫ > 0 being
arbitrary we get

(1) ‖T ‖ ≤ lim inf ‖Tα‖.
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Let us choose T ∈ P−1(0), T 6= 0. Then

(2)

lim sup
α

‖λTα‖ = lim sup
α

‖P (T − λTα)‖ ≤ ‖P‖ lim sup
α

‖(T − λTα)‖

≤ ‖P‖ lim sup
α

‖(IdX − kα)‖‖T ‖ ≤ ‖P‖‖T ‖.

From (1) and (2) we conclude that λ ≤ ‖P‖. �

Proposition 2. Let E be a Banach space such that its dual is separable and has

the approximation property. Let λ be a scalar with 1 < λ < 2. Then there is an
equivalent norm ||| · ||| on E such that (E, ||| · |||) ∈ K1λ.

Proof: Similarly as in [Sap] we choose by a result of [Zip] a Banach space E1 ⊃ E

such that E1 has a shrinking basis. Let {kn} be the projections in E1 given by the
shrinking basis. Following again Saphar’s paper we use [CasKa, Lemma 3.4] to
get an equivalent norm ||| · ||| on E1 such that |||IdE1−λkn||| = 1 and |||kn||| = 1. It
is well known that if E∗ has the (metric) approximation property [LT] and if E∗

is separable then there is a shrinking approximating sequence in E (cf. e.g. [Sin,
Remark 9.13]). This means that there is a sequence of finite-dimensional operators

in E such that hn
w′

−→ IdE . Evidently kn
w′

−→ IdE1 , so that k/E = kni
w′

−→ i

where i is the imbedding of E into E1. Let us set

ln = hn − kn/E : E −→E1.

Easily we observe that ln
w′

−→ 0 which means by (K) that {ln} converges to 0 in
the weak topology of K(E, E1). This implies that certain convex combinations
{l′p} of {ln} converge to 0 in the norm topology of K(E, E1). Let {h

′
p} (resp.

{k′p}) be the same convex combinations of {hn} (resp. {kn}). Let us consider on

E the equivalent norm ||| · ||| induced from E1. Then

lim sup
p

|||IdE − λh′p||| = lim sup
p

|||IdE − λk′p/E
||| ≤ 1

and similarly
lim
p

|||h′p||| = limp
|||k′p/E ||| = 1.

Observing that h′p
w′

−→ IdE finishes the proof. �

Propositions 1 and 2 have the following immediate corollaries the first of which
was proved in [Sap] and the second is new:

Corollary 1 (Saphar). Let the Banach space X and Y be Banach spaces such

that Y ∗ is separable and has the approximation property. Let λ be a scalar with

1 < λ < 2 and suppose that L(X, Y ) 6= K(X, Y ). Then Y can be equivalently

renormed so that any projection P of L(X, Y ) onto K(X, Y ) has the sup-norm
greater or equal to λ.
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Corollary 2. Let X and Y be Banach spaces such that X∗ is separable and

has the approximation property. Let λ be a scalar with 1 < λ < 2 and suppose
that L(X, Y ) 6= K(X, Y ). Then X can be equivalently renormed so that any

projection P of L(X, Y ) onto K(X, Y ) has the sup-norm greater or equal to λ.

The Proposition 3 generalizes certain results from [Sap].

Proposition 3. Let X and Y be Banach spaces such that X is reflexive and

has the approximation property (resp. Y is reflexive and has the approximation
property). Suppose that L(X, Y ) 6= K(X, Y ) and let 1 < λ < 2. Then X

(resp. Y ) can be equivalently renormed so that any projection P of L(X, Y ) onto
K(X, Y ) has the sup-norm greater or equal to λ.

Proof: First suppose that there is a norm one projection Q in X (resp. in Y )
which has the separable range and a noncompact operator T ∈ L(X, Y ) such that

(a) 0 6= T ∈ P−1(0),
(b) TQ = T (resp. T = QT ),

where P is the bounded projection of L(X, Y ) onto K(X, Y ).
Having in mind that the Banach space X∗ (resp. Y ∗) has the metric approxi-
mation property [LT] we see that also the range Q∗X∗ = (QX)∗ (resp. Q∗Y ∗ =
(QY )∗) of norm one projection Q∗ has the metric approximation property. Let
us denote by ‖ · ‖1 the initial norm on X (resp. on Y ) so that Q has the norm
one with respect to these norms. The Proposition 2 tells that there is an equiv-
alent norm ||| · ||| on QX (resp. on QY ) so that QX ∈ Kλ (resp. QY ∈ Kλ)
in the norm ||| · ||| . Now we proceed as in the proof of the Proposition 1. Let
{kα} ⊂ K(QX) (resp. K(QY )) be a sequence of compact operators in QX ⊂ X

(resp. QY ⊂ Y ) such that kα(z)−→ z weakly for all z ∈ QX (resp. z ∈ QY )
and lim supα |||IdQX − λkα||| ≤ 1 (resp. lim supα |||IdQY − λkα||| ≤ 1). Let us
extend this equivalent norm on QX (resp. on QY ) to an equivalent norm ‖ · ‖
on the whole X (resp. Y ) in such a way that ‖Q‖ = 1 again. We may put e.g.
‖x‖ = |||Qx||| + ‖(Id − Q)x‖1. Set Tα = TkαQ (resp. Tα = kαQT ). Again we
have (1) and (2) and thus λ ≤ ‖P‖.
It remains to observe that there are a projection Q in X (resp. in Y ) which has

the separable range and T ∈ L(X, Y ) such that (a) and (b) hold. Consider the set
S of all T ∈ L(X, Y ) such that T has the separable range. EvidentlyK(X, Y ) ⊂ S

and S is a linear subspace of L(X, Y ). Let us choose a noncompact T1 ∈ L(X, Y ).
As in [Sap] we use that the noncompactness of T1 is separable property. We
choose a sequence {xn} ⊂ X , ‖xn‖1 = 1 such that sequence {T1xn} ⊂ Y has no
convergent subsequences. Now if X (resp. Y ) is reflexive there is a projection Q1
in X (resp. Y ) such that Q1 has separable range containing {xn} (resp. {T1xn}).
Then T2 = T1Q (resp. T2 = QT1) is a noncompact operator with a separable
range. Thus K(X, Y ) ⊂ S, K(X, Y ) 6= S and the projection P is invariant
on S ⊂ L(X, Y ). Let us consider the restriction P/S of P on S. We may choose

0 6= T ∈ P−1
/S
(0). Now if Y is reflexive we chose by [Lin, Proposition 1] a projection

Q in Y , Q having a separable range QY which contains the range of T and thus
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T = QT . The separability of TX implies the w∗-separability of T ∗Y ∗ ⊂ X∗

(cf. e.g. [AmLin, Lemma 5] which works also for linear operators]). Now if X is
reflexive T ∗Y ∗ is weakly separable and thus separable. Using again [Lin] we get
a projection Q in X such that the range of Q∗ contains T ∗Y ∗. Thus T ∗ = Q∗T ∗

which means that T = TQ. �

Remark 1. With slightly more care it can be seen that the assumption of the
reflexivity of the Banach space X (resp. Y ) in the above Proposition 5 may be
substituted by more general assumption that the Banach space X (resp. Y ) is
weakly compactly generated and Asplund. Namely we may show that the follow-
ing generalization of Corollaries 1, 2 and Propositions 3 holds:

Let λ be a scalar with 1 < λ < 2 and suppose that L(X, Y ) 6= K(X, Y ). Suppose
that one of the assumption (i) or (ii) is valid.

(i) X is a weakly compactly generated Banach space, X is an Asplund space

and X∗ has the approximation property.

(ii) Y is a weakly compactly generated Banach space, Y is an Asplund space

and Y ∗ has the approximation property.

Then X (resp. Y ) can be equivalently renormed so that any projection P of

L(X, Y ) onto K(X, Y ) has the norm greater or equal to λ.

The proof is formally the same as that of the Proposition 3. The separability of
(TX)∗ (resp. (TY )∗) is a consequence of the Asplundness assumption. To get
a projection Q with a separable range in X such that T ∗Y ∗ ⊂ Q∗X∗ we use
[AmLin, Lemma 4] and the w∗-separability of T ∗Y ∗.
For the last remark we will repeat the extended definition of the Godun set
G(E, M) from [Sap]:

Definition 2. Let E be a Banach space and a subspace M ⊂ E∗∗ with E ⊂ M .
We define the set G(E, M) of positive scalars λ such that for any x∗∗ ∈ M there
exists a net {xα} ⊂ E which verifies the following properties:

1) xα −→x∗∗ in the w∗-topology σ(E∗∗, E∗),
2) lim supα ‖x∗∗ − λxα‖ ≤ ‖x∗∗‖.

Remark 2. As it was mentioned at the beginning of the paper Saphar [Sap] de-
duces the lower estimates of the possible projections P of L(X, Y ) onto K(X, Y )
from statements on the Godun set G(K(X, Y ), L(X, Y )). We have preferred
to use the simple direct proofs. Nevertheless the statements on the Godun set
G(K(X, Y ), L(X, Y )) are also possible in our cases. For example we have

Proposition 1′. Let the Banach space X or the Banach space Y belong to the

class K1λ. Then there is an isometric imbedding J : L(X, Y )−→K(X, Y )∗∗ and
we have λ ∈ G(K(X, Y ), L(X, Y )).

Proof: We proceed as in [Jo, Lemma 2]. Denote by K the closed unit ball in
the space K(X, Y )∗∗ and consider in K the w∗ topology. Let Tα ∈ K(X, Y ) be
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the approximations of T defined in the proof of Proposition 1. Let BL(X,Y ) be a

closed unit ball in L(X, Y ) and let {Jα} be a net in KBL(X,Y ) defined by

Jα(T ) = Tα.

The space KBL(X,Y ) being compact we may choose a subnet {Jαβ
} converging

w∗ to J ∈ KBL(X,Y ) . Let us extend J by homogeneity to the whole of L(X, Y ).
Evidently J is linear map of L(X, Y ) into K(X, Y )∗∗ and

(3) J(T )(φ) = lim
β

φ(Tαβ
)

for all φ ∈ K(X, Y )∗.
Now let lim supα ‖kα‖ ≤ 1 for all α, where kα satisfy (i) and (ii) from the Defini-
tion 1. Considering φ = x ⊗ y∗ ∈ K(X, Y )∗ we get from (3) and (i)

‖T ‖ = sup{lim
β

y∗(Tαβ
(x)); ‖x ⊗ y∗‖ = 1} = sup{|JT (x ⊗ y∗)|; ‖x ⊗ y∗‖ = 1}

≤ ‖jT ‖∗∗ = sup{|JT (φ)|; ‖φ‖∗ ≤ 1} = sup{lim
β

φ(Tαβ
)}

≤ lim sup
β

‖Tαβ
‖ ≤ ‖T ‖ lim sup‖kα‖ ≤ ‖T ‖.

Thus J is an isometry of L(X, Y ) into K(X, Y )∗∗. If T is any element from
L(X, Y ) we have

lim sup
α

‖JT − λJTα‖
∗∗ = lim sup

α
‖T − λTα‖ ≤ ‖T ‖ lim sup

α
‖Id − λkα‖ ≤ ‖T ‖.

Proposition 1′ together with Proposition 2 combine to give statements simi-
lar to the Corollaries 1 and 2, Proposition 3 and the proposition stated in the
Remark 1. For example the last one reads:

Let λ be a scalar with 1 < λ < 2 and suppose that one of the assumption (1) or
(2) is valid.

(1) X is a weakly compactly generated Banach space, X is an Asplund space

and X∗ has the approximation property.

(2) Y is a weakly compactly generated Banach space, Y is an Asplund space

and Y ∗ has the approximation property.

Then X in the case (1) (resp. Y in the case (2)) can be equivalently renormed so
that λ ∈ G(K(X, Y ), L(X, Y )). �
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