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A construction of simplicial objects

Tomáš Crhák

Abstract. We construct a simplicial locally convex algebra, whose weak dual is the stan-
dard cosimplicial topological space. The construction is carried out in a purely cate-
gorical way, so that it can be used to construct (co)simplicial objects in a variety of
categories — in particular, the standard cosimplicial topological space can be produced.
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Simplicial sets play the central part in the combinatorial homotopy theory.
The bridge between the category of simplicial sets (denoted by ∆oSET) and other
categories is maintained by a pair of adjoint functors: Let E be an arbitrary
covariant functor of the category ∆ (objects of ∆ are the sets [n] = {0, · · · , n},
n < ℵ0, and morphisms the nondecreasing maps) into a category T . The singular
functor associated with E is the covariant functor EH : T - ∆oSET given by

EH(P ) = T (E(−), P ).

The realization functor EN : ∆oSET - T is the left adjoint to EH — it exists
whenever T is cocomplete.
Thus we see that the singular and realization functors depend on — and, in

fact, are uniquely determined by — the base functor E.
Sometimes there is a “natural” choice for E — this is the case with the geomet-

ric realization, where E = ∆∗ is the standard cosimplicial topological space (as
defined in [1], f.g.). In [2] Besser finds a kind of justification for this choice, but
the geometric realization stays tightly connected with the closed unit interval in
his work. However, we will see (cf. Remark 1.3) that an arbitrary locally compact
Hausdorff monoid with an annihilating element can be taken instead of the closed
unit interval — then a cosimplicial topological space E can be constructed in such
a way that E1 is homeomorphic to the monoid.
Another time there is no choice for E, which would be commonly accepted as

the “right” choice and various (co)simplicial objects E come in useful — in Cartan
Theorem (see [3]; here contravariant functors E, EH and EN are used instead of
the covariant ones — take the opposite category of A to obtain this version)
simplicial DGAs are studied. In order to define a suitable simplicial DGA, the
Cenkl-Porter construction can be used (cf. [4]).
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Finally, the realization functors need not exist at all, as it is the case with
the category of smooth manifolds; nonexistence of realization functors is due to
nonexistence of certain colimits. The category of locally convex algebras (denoted
by LCA) is a good substitute for the category of smooth manifolds: The category
LCA is complete, so that the realization functor exists for each simplicial locally
convex algebra E (note, that the transition from a smooth manifold to the locally
convex algebra of the smooth functions defined on the manifold is contravariant!).
The original purpose of this work was to find a simplicial locally convex alge-

bra with weak dual the standard cosimplicial topological space, which would not
contain “welds” arising when the Cenkl-Porter construction is used. It turned
out that the construction can be carried out in a purely categorical way — this
is how the construction is presented.

1. Construction itself

The essential principle of the construction assumes that we are given a method
(formally represented by a functor T ) corresponding to taking the Cartesian prod-
uct of a “geometric” object with the unit interval. The simplicial object is then
constructed recursively: when the n-dimensional simplex has been constructed,
the (n+1)-dimensional one is obtained by dilating the former by T and collapsing
one of the faces (see Figure 1.1).

Figure 1.1. The principle of the recursive definition of (co)simplicial objects.

The collapse mapping of the faces is indicated by β, T stands for the dilation.

T

T

β

β

Some of the face and degeneracy operators are lifted from the preceding step,
some of them are newly defined in the induction step. One of the degeneracy
operators is however a little bit difficult, since it “folds” a newly created face (the
faces of Figure 1.1 involving dotted lines) onto an old one.
Let A be an arbitrary category with all pullbacks, T : A - A a covariant

functor and ϕ, ψ : T - IdA, η : IdA - T and κ : T - T 2 natural
transformations. Let us assume that 〈T, ϕ, ψ, η,κ〉 is a simplicial construction in
sense of the following definition.



A construction of simplicial objects 3

Definition 1.1. We say that 〈T, ϕ, ψ, η,κ〉 is a simplicial construction for A if
T preserves pullbacks and the five diagrams below are commutative.
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κ
-
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T
κ

-
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κ -
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(e)

Figure 1.2. Diagrams for Simplicial Construction

We will use the simplicial construction 〈T, ϕ, ψ, η,κ〉 to assign to a given object
A of A a simplicial A-object A∗, with face operators d

n
i and degeneracy operators

sni , such that A0 = A. Nevertheless, we will not know until Proposition 1.1 that
A∗ is indeed a simplicial A-object, i.e., that the operators dn

i and s
n
i satisfy the

usual relations ([1, p. 175]). Thus, to be precise, we will proceed by recursion on
n ≥ 0 and in the induction step we will define:

A. principal items

(1) A-object An+1;

(2) face operators dn+1
i ∈ A (An+1, An);

(3) degeneracy operators sni ∈ A (An, An+1);

B. auxiliary morphisms

(1) βn+1 ∈ A (An+1, T (An)), which corresponds to the collapse mapping as
explained in the introduction to the present section;
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(2) κn+1 ∈ A (An+1, T (An+1)), which is utilized to define the difficult dege-
neracy operator and to prove a contractibility of An+1 to An;

(3) αn+1 ∈ A (An+1, An−1) (only for n ≥ 1), which is of no particular signi-
ficance.

These items will be constructed in such a way that the following relations and
property, which will be verified during the construction, hold true:

βmd
m+1
i = T (dm

i )βm+1 for 0 ≤ i ≤ m− 1(D1)

dm+1
m = ψAm

βm+1 for m ≥ 0(D2)

dm+1
m+1 = ϕAm

βm+1 for m ≥ 0(D3)

βm+1s
m
i = T (s

m−1
i )βm for 0 ≤ i ≤ m− 2(S1)

βm+1s
m
m−1 = κm for m ≥ 1(S2)

βm+1s
m
m = ηAm

for m ≥ 0(S3)

T (dm+1
m+1)κm+1 = ηAm

dm+1
m+1 for m ≥ 0(K)

T k(βm) is a monomorphism for m ≥ 1, k ≥ 0(P )





(DSKP )

First of all, we initialize the recursive construction by setting:

A. principal items

(1) A0 = A and A1 = T (A0);
(2) d10 = ψA0 and d

1
1 = ϕA0 ;

(3) s00 = ηA0 ;

B. auxiliary morphisms

(1) β1 = A1;
(2) κ1 = κA0 .

One sees easily that the properties (DSKP ) (for m = 0) are satisfied.

Next, let us suppose that Am, d
m
i , s

m−1
i , αm, βm and κm have been con-

structed for all m ≤ n, n ≥ 1, and that they satisfy the corresponding properties
of (DSKP ). The induction step reads as follows:
As far as An+1, αn+1 and βn+1 are concerned, they are defined by the require-

ment that the diagram of Figure 1.3 be a pullback. Observe, that for k ≥ 0 the
morphism T k(βn+1) is a monomorphism, since the functor T

k preserves pullbacks

and T k(βn+1) lies opposite T
k(ηAn−1

), which is a monomorphism by diagram (b)
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of Figure 1.2, in the corresponding T k-image of the diagram of Figure 1.3.

T (An)
T (dn

n) - T (An−1)

An+1
αn+1 -

βn+
1 -

An−1

ηAn
−
1 -

Figure 1.3. Definition of An+1

In order to define κn+1, let us give our attention to the cube of Figure 1.4.
Employ the naturality of κ and η and the diagram (c) of Figure 1.2 to see that
the four complete faces of the cube are commutative. Moreover, since the functor
T preserves pullbacks, the top face is a pullback and we may (and do) use its
universal property to define κn+1 by the requirement the two remaining faces of
Figure 1.4 also be commutative.

T 2(An)
T 2(dn

n) - T 2(An−1)

T (An+1)
T (αn+1)-

T (
βn+
1)- 6

T (An−1)

T (
ηAn

−
1
) -

T (An)

κAn

T (dn
n) - T (An−1)

κAn−1

6

An+1

κn+1

6

αn+1 -

βn+
1 -

An−1

ηAn−1

6

ηAn
−
1 -

Figure 1.4. Definition of κn+1

Now we are going to define the face operators dn+1
i . The last two of them

(i = n, n + 1) are defined by the relations (D2) and (D3), where we set m = n.
For n = 1, the face operator d20 is given by

d20 = T (d
1
0)β2.

For n ≥ 2, cf. the cube of Figure 1.5 to construct the operators dn+1
i , i ≤ n− 1.

Its top and bottom faces are commutative by definition (Figure 1.3) and the right-
hand face is commutative by the naturality of η. Let us show that also the back
face is commutative (for i ≤ n − 1): for i < n − 1 we have (by the induction
hypothesis and the naturality of ϕ)

dn−1
i dn

n = d
n−1
i ϕAn−1

βn = ϕAn−2
T (dn−1

i )βn = ϕAn−2
βn−1d

n
i = d

n−1
n−1d

n
i ,
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whereas for i = n− 1

dn−1
n−1d

n
n = d

n−1
n−1ϕAn−1

βn = ϕAn−2
T (dn−1

n−1)βn = ϕAn−2
ηAn−2

αn = αn

and similarly

dn−1
n−1d

n
n−1 = d

n−1
n−1ψAn−1

βn = ψAn−2
T (dn−1

n−1)βn = ψAn−2
ηAn−2

αn = αn.

Now the morphisms dn+1
i (i ≤ n− 1) are defined by the universal property of the

top face, which is a pullback. The relations (D1) and (K) are at this moment
readily verified.

T (An−1)
T (dn−1

n−1) - T (An−2)

An
αn -

βn
- 6

An−2

ηAn
−
2 -

T (An)

T (dn
i )

T (dn
n) - T (An−1)

T (dn−1
i )

6

An+1

dn+1
i

6

αn+1 -

βn+
1 -

An−1

dn−1
i

6

ηAn
−
1 -

Figure 1.5. Definition of d
n+1

i
for i ≤ n− 1

Finally, let us define the degeneracy operators sni . For i ≤ n−2 the operator sni
is defined as indicated in the diagram of Figure 1.6, in which all the four complete
faces are commutative — this is obvious except for the back one. However, by
the induction hypothesis, for i < n− 2 we have

dn
ns

n−1
i = ϕAn−1

βns
n−1
i = ϕAn−1

T (sn−2i )βn−1 = s
n−2
i ϕAn−2

βn−1 = s
n−2
i dn−1

n−1,

and for i = n− 2 we have

βn−1d
n
ns

n−1
i = βn − 1ϕAn−1

βns
n−1
i = βn−1ϕAn−1

κn−1=ϕT (An−2)T (βn−1)κn−1

= ϕT (An−2)κAn−2
βn−1 = ηAn−2

ϕAn−2
βn−1 = βn−1s

n−2
n−2d

n−1
n−1,

therefore, in both cases we have

dn
ns

n−1
i = sn−2i dn−1

n−1,

since βn−1 is a monomorphism by (P ). (The relations above make sense only for
n > 1, but we do not have to bother about them for n = 1 as they are not needed
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in the latter case.) Thus, the commutativity of the back face of Figure 1.6 follows
and, once again, we use the fact that the top face of Figure 1.6 is a pullback to
define sni .

T (An)
T (dn

n) - T (An−1)

An+1
αn+1 -

βn+
1 - 6

An−1

ηAn
−
1 -

T (An−1)

T (sn−1i )
T (dn−1

n−1) - T (An−2)

T (sn−2i )

6

An

sni

6

αn -

βn
-

An−2

sn−2i
6

ηAn
−
2 -

Figure 1.6. Definition of s
n

i
for i ≤ n− 2

The operators snn−1 and s
n
n are defined as in the diagram of Figure 1.7. As far

as snn−1 is concerned, the morphism κn is used and it follows by the induction
hypothesis, namely the relation (K), that

T (dn
n)κn = ηAn−1

dn
n.

Once again, utilize the universal property of the pullback to define snn−1.
Similarly the operator snn is defined — this time the naturality of η is used to

verify that the universal property can be employed.

T (An)
T (dn

n) - T (An−1)

An+1
αn+1 -

βn+
1 --

An−1

ηAn
−
1 -

An

snn−1, s
n
n

6

d
n
n

-

κ n
, η

A
n

Figure 1.7. Definition of s
n

n−1 and s
n

n

The recursion is complete.
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Proposition 1.1. The sequence {An}n<ℵ0
together with the morphisms dn

i and

sni as constructed above yield a simplicial A-object A∗.

Proof: The proof depends in verifying the usual relations, which the morphisms
dn
i and s

n
i must satisfy. This is done easily, one only applies the elementary

categorical calculus on the properties (DSKP ) and the diagrams of the Figure 1.2.
�

Let ρ : A - B be a morphism of A. We leave it to the reader that ρ can be
(recursively) extended to a simplicial A-morphism ρ∗ : A∗

- B∗ (i.e. ρ0 = ρ).

Proposition 1.2. The assignment indicated above yields a covariant functor

from the category A to the category of A-objects.

In what follows we aim at showing that the simplicial A-object A∗ has suitable
contractibility properties. Though the definitions of homotopy, composed homo-
topy and contractibility could be carried out in a more general fashion, we still
assume that 〈T, ϕ, ψ, η,κ〉 is a simplicial construction for A; the reason is that
we use fragments of the properties of the data to conclude some useful properties,
which will be needed in the sequel.

Definition 1.2. Let µ, ν ∈ A (A,B).

(1) We say that ϑ ∈ A (A, T (B)) is a homotopy from µ to ν, if µ = ϕB ◦ ϑ
and ν = ψB ◦ ϑ. We write µ ⇀ ν if there is a homotopy from µ to ν.

A
µ -

ν
- B

T (B)

ϕB

6
ψB

6
ϑ -

Figure 1.8. Homotopy of Morphisms

(2) The morphisms µ and ν are composed-homotopic if there exists a sequence
of morphisms µ0, . . . , µn ∈ A (A,B) such that

µ = µ0 ⇀ µ1 ↽ µ2 ⇀ · · ·↽ µn = ν.

Then we write µ ⇋ ν.

Proposition 1.3. The relation ⇀ is

(1) reflexive on every set A (A,B);
(2) compatible with the composition of morphisms in A, i.e., for all µ, ν ∈

A (A,B) such that µ ⇀ ν we have

(a) τ ∈ A (C,A) =⇒ µτ ⇀ ντ and
(b) τ ∈ A (B,C) =⇒ τµ ⇀ τν.
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Corollary 1.1. The relation ⇋ is a congruence on A, i.e.,

(1) it is an equivalence on all sets A (A,B);
(2) it is compatible with the composition of morphisms in A.

The relations discussed may, of course, happen to coincide. Since the category
A has all pullbacks, there are induced a covariant functor T+ : A - A and
natural transformations ϕ+, ψ+ : T+ - T , determined uniquely up to natural
equivalence by the requirement the diagram of Figure 1.9 be a pullback.

T (A)

T+(A)

ϕ
+
A

-

A

ψ
A

-

T (A)
ϕA

-

ψ +
A

-

Figure 1.9. Definition of T
+

, ϕ
+

and ψ
+

Then we have:

Proposition 1.4. The relation ⇀ is

(1) symmetric iff for all A ∈ obj A ψA ⇀ ϕA;

(2) transitive iff for all A ∈ obj A ϕAϕ
+
A ⇀ ψAψ

+
A .

Definition 1.3. Let A,B ∈ obj A. Then B is contractible to A if there exist
α ∈ A (B,A) and β ∈ A (A,B) such that B ⇋ β ◦ α.

Proposition 1.5. For all objects A, B and C of A we have:

(1) A is contractible to A.
(2) If C is contractible to B and B is contractible to A then C is contractible
to A.

(3) T (A) is contractible to A.

Proposition 1.6. For an arbitrary object A ∈ obj A, the n-th A-object An of

A∗ is contractible to A.

Proof: It suffices to show that An+1 is contractible to An. Consider the diagram
of Figure 1.10.
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An

An+1
An+1 -

d
n+
1

n+
1 -

An+1

s n
n

-

T (An+1)

ϕAn+1

6
ψAn+1

6
κn+1 -

Figure 1.10.

From the naturality of ϕ, definitions of κn+1, d
n+1
n+1, s

n
n and diagram (d) of Fi-

gure 1.2 it follows that

βn+1ϕAn+1
κn+1 = βn+1s

n
nd

n+1
n+1

thus
ϕAn+1

κn+1 = s
n
nd

n+1
n+1

since βn+1 is a monomorphism.
Similarly we conclude that

ψAn+1
κn+1 = An+1.

Therefore κn+1 is a homotopy from snnd
n+1
n+1 to An+1. �

Remark 1.1. For all n there is a canonical monomorphism

γn : An
- Tn(A0),

namely the composition

An
βn- T (An−1)

T (βn−1)- T 2(An−2)
T 2(βn−2)- · · ·

T n−1(β1)- Tn(A0).

Example 1.1. Let A be the category of unital algebras over a commutative
unital ring k. The functor T assigns to every algebra A the polynomial algebra
A[t] and is defined on homomorphisms in the obvious way. The homomorphisms

ϕA, ψA : A[t] - A

are given by
ϕA(f) = f(0)

ψA(f) = f(1)
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and
ηA : A - A[t]

is the canonical inclusion. Finally,

κA : A[t] - A[t1, t2]

is the unique homomorphism identical on A and satisfying

κA(t) = t1t2.

It is readily checked that 〈T, ϕ, ψ, η,κ〉 just defined is a simplicial construction
for A.
The simplicial k-algebra A∗ assigned to k can be described as follows: let us

for natural numbers r1, · · · , rn denote by [r1, · · · , rn] the element x
r1
1 · · ·xrn

n of
the polynomial algebra k[x1, · · · , xn]. Then An is the subalgebra of k[x1, · · · , xn]
generated (as a k-module) by the elements [r1, · · · , rn] satisfying

ri = 0 =⇒ ri+1 = 0 i = 1, · · · , n− 1.

Note that An is not (as a k-algebra) finitely generated.
The face and degeneracy operators are given by

di[r1, · · · , rn] = [r1, · · · , ri, r̂i+1, ri+2, · · · , rn] i < n

dn[r1, · · · , rn] =

{
[r1, · · · , rn−1] rn = 0

0 rn > 0

si[r1, · · · , rn] = [r1, · · · , ri+1, ri+1, · · · , rn] i < n

sn[r1, · · · , rn] = [r1, · · · , rn, 0],

where ˆ denotes omittion.
As far as homotopy is concerned, it is symmetric but, in general, not transitive

— f.g. whenever k is an integral domain.

The next example uses the dual of the simplicial construction, the cosimplicial
construction. We keep the same notation, thus

T : A - A

remains a covariant functor and the natural transformations have the opposite
directions:

ϕ, ψ : IdA - T

η : T - IdA

κ : T 2 - T.

Only the face and degeneracy operators are denoted, as usually, by δni and σ
n
i

respectively.
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Example 1.2. Let A = TOP be the category of topological spaces. The functor
T = (− × I), where I denotes the closed unit interval, preserves all pushouts —
in fact, it is a left adjoint (I is Hausdorff (locally) compact!).
The natural transformations ϕ, ψ, η and κ are given by (here P is a topological

space)
ϕP (p) = 〈p, 0〉

ψP (p) = 〈p, 1〉

ηP (p, τ) = p

κP (p, τ1, τ2) = 〈p, τ1τ2〉

for all p ∈ P and τ, τ1, τ2 ∈ I.

Proposition 1.7. The cosimplicial topological space assigned by the cosimpli-

cial construction described above to a singleton is isomorphic to the standard

cosimplicial topological space ∆∗.

Proof: We proceed by induction. It is immediate that ∆0 is a singleton and
∆1 ≃ I, which is how the recursive cosimplicial construction is initialized. Also
the operators δ10, δ

1
1 and σ

0
0 are defined correctly. Let us identify ∆

1 with I. In

order to treat the induction step we assume that ∆m together with δmi , σ
m−1
i

and the maps αm, βm, κm has been constructed for all m ≤ n, where n ≥ 1.

∆n−1 × I
δnn × I - ∆n × I

∆n−1

αn+1

-

η
∆

n
−
1

-

∆n+1

β
n +
1
-

Figure 1.11.

First of all observe, that the diagram above is a pushout — the maps αn+1
and βn+1 are defined by the formulae

αn+1(ξ0, · · · , ξn−1) = (ξ0, · · · , ξn−1, 0, 0),

βn+1(ξ0, · · · , ξn, τ) = (ξ0, · · · , ξn−1, ξn(1− τ), ξnτ).

From this it is obvious that the face operators δn+1i constructed by the cosimplicial
construction coincide with the usual ones.
Next, the map κn+1 (see Figure 1.4 for the definition) satisfies

κn+1(ξ0, · · · , ξn+1, τ) = (ξ0, · · · , ξn−1, ξn + ξn+1(1− τ), ξn+1τ).

It remains to verify that the usual degeneracy operators σn
i coincide with those

defined by the cosimplicial construction, which is, at this moment, an easy task.
�
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Remark 1.2. The explicit definition of γn : I
n - ∆n reads as follows:

γn(τ1, · · · , τn) = (1− τ1, τ1(1− τ2), τ1τ2(1− τ3), · · · , τ1 · · · τn−1(1− τn), τ1 · · · τn).

Remark 1.3. Observe that an arbitrary locally compact monoid with an an-
nihilating element can be used in the example above instead of the closed unit
interval.

2. Standard simplicial locally convex algebra

In this section we will apply the simplicial construction developed in Section 1
in order to define the standard simplicial locally convex algebra and we will in-
vestigate its basic properties.
Once for all, locally convex algebra will always mean real Hausdorff locally

convex topological unital commutative algebra with (jointly) continuous multipli-
cation. The category of all locally convex algebras (with morphisms the unital
continuous algebra homomorphisms) is denoted by LCA. Note, that LCA is both
complete and cocomplete.
Let us by C∞ (I,−) denote the functor assigning to a locally convex algebra

the topological algebra of all infinitely differentiable mappings of the closed unit
interval I into A; the topology of C∞ (I, A) is the topology of uniform convergence
on I of the mappings together with their derivations of all orders. We write C∞ (I)
provided A = R.
Thus, in the sequel, A will be the category of locally convex algebras LCA, which

is complete; in particular, it has all pullbacks. Further, we set T = C∞ (I,−).
The functor C∞ (I,−) is easily verified to preserve all pullbacks of LCA.
The natural transformations ϕ, ψ, η and κ are given by the following formulae

(A ∈ obj LCA):

ηA(x)(ξ) = x ∀ ξ ∈ I, x ∈ A

ϕA(f) = f(0) ∀ f ∈ C∞ (I, A)

ψA(f) = f(1) ∀ f ∈ C∞ (I, A)

κA(f)(ξ1, ξ2) = f(ξ1ξ2) ∀ f ∈ C∞ (I, A) , ξ1, ξ2 ∈ I.

Let us first of all note that the homotopy relation (see Definition 1.2) associated
with the simplicial construction 〈T, ϕ, ψ, η,κ〉 defined above is both symmetric
and transitive, hence it coincides with the composed homotopy. To prove the
transitivity of ⇀, we proceed according to Proposition 1.4:

Let ♭ :
[
0, 12

] - I be a C∞-function flat at 12 , ♭(0) = 0 and ♭(
1
2 ) = 1.

For an arbitrary locally convex algebra A, the algebra A+ in the pullback



14 T.Crhák

C∞ (I, A)

A+

ϕ
+
A

-

A

ψ
A

-

C∞ (I, A)
ϕA

-
ψ +
A

-

can be identified with the (locally convex) subalgebra of C∞ (I, A) × C∞ (I, A)
consisting of all the pairs 〈f, g〉 such that f(1) = g(0). The homomorphism

ϑ : A+ - C∞ (I, A)

given by

ϑ(〈f, g〉)(ξ) =

{
f(♭(ξ)) for ξ ∈

[
0, 12

]

g(♭(1− ξ)) for ξ ∈
[
1
2 , 1

]

yields a homotopy from ϕAϕ
+
A to ψAψ

+
A .

Definition 2.1. The simplicial locally convex algebra assigned to R by the sim-
plicial construction 〈T, ϕ, ψ, η,κ〉 described above will be denoted by ∆∗ and
called the standard simplicial locally complex algebra.

Let us establish the relationship between the simplicial object ∆∗ and the
cosimplicial one ∆∗.
Let

H : LCA - TOP

be the hom-functor LCA(−,R), where, for an algebra A ∈ obj LCA, the set
LCA(A,R) is endowed with the weak topology. Note that H (A) is always Haus-
dorff.

Definition 2.2. Let β : A - B be a morphism of locally convex algebras.

(1) We say that B has the (INV )-property if

(∀ b ∈ B)(∀ ζ ∈ H (B))(ζ(b) 6= 0 =⇒ b is invertible).

(2) We say that β has the (NIP )-property if

(∀ a ∈ A)(β(a) is invertible =⇒ a is invertible).
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Lemma 2.1. Let β : A - B be a morphism of locally convex algebras and
suppose that B has the (INV )-property and β has the (NIP )-property. Then

(1) C∞ (I, B) has the (INV )-property;
(2) A has the (INV )-property;
(3) in the pullback below, β1 has the (NIP )-property.

B1 - B

A1 -

β1
-

A

β

-

(4) if H (B) is compact, H (β) : H (B) - H (A) is surjective.

Proof of (4): We use a standard argument. Let ξ ∈ H (A). For all x ∈ ker (ξ)
we set

Fx = {ζ ∈ H (B) : β(x) ∈ ker (ζ)}.

Then Fx is a closed subset ofH (B) since the topology ofH (B) is the weak one, Fx

is non-empty, since Fx = ∅ implies that β(x) be invertible by the (INV )-property
of B, consequently x be invertible by the (NIP )-property of β, which would be
a contradiction with the assumption x ∈ ker (ξ). Finally, Fx2

1
+x2
2
⊆ Fx1 ∩ Fx2 .

Thus the family

〈Fx : x ∈ ker (ξ)〉

is a centered system in H (B) and by the compactness of H (B) the intersection

⋂
{Fx : x ∈ ker (ξ)}

is non-empty. It is a routine to show that for an arbitrary ζ belonging to the
intersection in question H (β) (ζ) = ξ. �

Consequence 2.1. For all n, the locally convex algebras∆n and T (∆n) have the
(INV )-property and the corresponding morphisms βn have the (NIP )-property.

Proof: Realize that ηA has the (NIP )-property for all A ∈ obj LCA, ∆0 = R

has the (INV )-property and apply items 1–3 of the preceding lemma. �

Definition 2.3. We say that a locally convex algebra A has the (UC)-property
if

(∀ ε > 0)(∃U, a neighborhood of zero in A)(∀u ∈ U)(∀α ∈ H (A))(|α(u)| < ε).
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Lemma 2.2. Let A have the (UC)-property. Then

(1) C∞ (I, A) has the (UC)-property;
(2) for all morphisms π ∈ LCA(B,A), if H (π) is surjective, then B has the
(UC)-property;

(3) the canonical map

f : H (A)× I - H (C∞ (I, A))

given by

f(α, ξ)(x) = α(x(ξ))

is a homeomorphism.

Lemma 2.3. In LCA, consider a pullback (Figure 2.1) with α1 a surjective homo-
morphism and p, q ∈ LCA(A1,R) distinct homomorphisms such that pπ1 = qπ1.
Suppose the topology of A0 is the terminal topology w.r.t. α1. There exist homo-
morphisms p0, q0 ∈ LCA(A0,R) such that p = p0α1, q = q0α1 and p0α2 = q0α2.

A1
α1 - A0

A
π2

-

π1
-

A2

α2

-

Figure 2.1.

Proof: We will prove the existence of p0. For simplicity we suppose A ⊆ A1×A2
and π1, π2 are the projections. Let z ∈ A1 be such that p(z) = 1 and q(z) = 0;
such an element exists since p 6= q. Now for an arbitrary x ∈ ker (α1) we have
〈xz, 0〉 ∈ A, hence p(xz) = q(xz) by the hypothesis. Thus

p(x) = p(xz) = q(xz) = 0.

We have proved that
ker (α1) ⊆ ker (p) ,

therefore the existence of a homomorphism p0 : A0 - R (a priori not contin-
uous) such that p = p0 ◦ α1 follows by a standard argument. The continuity of
p0 is a consequence of the assumption the topology of A0 be the terminal one
w.r.t. α1. The morphism q0 is found in the same way.
Next we have

p0α2π2 = p0α1π1 = pπ1 = qπ1 = q0α1π1 = q0α2π2,

hence p0α2 = q0α2 since π2 is surjective as so is α1 (this holds true in LCA). �
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Proposition 2.1. The image H (∆∗) of the standard simplicial locally convex
algebra ∆∗ is homeomorphic to the standard cosimplicial topological space ∆

∗.

Proof: We have to prove that for all n ≥ 0 there are homeomorphisms

ιn : H (∆n) - ∆n

such that the diagrams

H (∆n−1)
ιn−1- ∆n−1

H (∆n)

H
(
dn
i

)
?

ιn
- ∆n

δni?

H (∆n+1)
ιn+1- ∆n+1

H (∆n)

H
(
sni

)
?

ιn
- ∆n

σn
i?

Figure 2.2.

are commutative.
In addition to the statement of the proposition we will also prove that all

the locally convex algebras ∆n have the (UC)-property; this is necessary for the
induction step.
We proceed by induction on n. The assertions are obvious for n = 0, 1. Let

us suppose that they hold true up to some n ≥ 1 and that the isomorphisms ιm
(m ≤ n) are defined. From Lemma 2.2 and the induction hypothesis it follows
that

(1) H (C∞ (I,∆n)) ∼= H (∆n)× I ≃ ∆n × I,

where the canonical isomorphism ∼= is that of Lemma 2.2 and the isomorphism ≃
is ιn × I. We apply the functor H to the pullback defining the algebra ∆n+1 and
after the obvious identifications we obtain

(D)

∆n × I � δnn × I
∆n−1 × I

H (∆n+1) � H (αn+1)�
H
(βn+

1
)

∆n−1
� η∆

n
−
1 .

Let us show that the diagram (D) is a pushout. Assume P is a topological space
and f ∈ TOP(∆n × I, P ) and g ∈ TOP(∆n−1, P ) satisfy

(2) f ◦ (δnn × I) = g ◦ η∆n−1 .

From (1) it results that H (C∞ (I,∆n)) is compact and we use Lemma 2.1(4) and
Consequence 2.1 to conclude that H (βn+1) is surjective. Hence the domain of
the relation

h = f ◦H (βn+1)
−1
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is the whole of H (∆n+1) and it is an immediate consequence of Lemma 2.3 and
equality (2) that h is a mapping. One sees easily that

f = h ◦H (βn+1) ,

g = h ◦H (αn+1) .

To prove continuity of h, observe first thatH (βn+1) is closed, for it is a continuous
mapping of a compact space into a Hausdorff space. Now continuity of h follows
from the relation

h−1(F ) = H (βn+ 1) (f−1(F )),

valid for all (a fortiori closed) subsets of P , and from continuity of f .
It therefore follows that the diagram (D) is a pushout. In particular, the

universal property of the pushout yields a uniquely determined isomorphism ιn+1 :
H (∆n+1) - ∆n+1.
Since the definitions of the face and degeneracy operators involve only uni-

versal properties of the appropriate pullbacks (for ∆∗) and pushouts (for ∆
∗ —

cf. Proposition 1.7) and H transforms the fragment of the simplicial construction
for LCA involved in constructing ∆∗ to that of cosimplicial construction for TOP
involved in constructing ∆∗, which is now readily proved, the commutativity of
the two squares of Figure 2.2, in which every occurrence of n is once for now
replaced with n+ 1, follows. �

Let us describe the locally convex algebras ∆n in a more transparent way.
From Remark 1.1 it follows that the homomorphisms γn : ∆n

- C∞ (In) are
injective. We will prove more:

Proposition 2.2. The homomorphisms γn are embeddings.

Proof: It suffices to prove that the homomorphisms T k(βn) are embeddings for
all k ≥ 0, n ≥ 1. This is obvious for n = 1, while for n ≥ 2 we use the fact that
T k(βn) lies opposite the homomorphism T k(η∆n−2

) in the pullback

T k+1(∆n−1)
T k+1(dn−1

n−1)- T k+1(∆n−2)

T k(∆n)
αn

-

T
k (βn
)-

T k(∆n−2)
T
k (η∆

n
−
2
)-

and T k(ηn−2) is an embedding, since it has a left (continuous) inverse, f.g. the
homomorphism ϕ∆n−2

. �

Therefore the locally convex algebra ∆n can be identified with a subalgebra of
C∞ (In). Then the algebra ∆n consists of all those mappings of C

∞ (In) which
factor through γn : I

n - ∆n. Here a more detailed description of the elements
of ∆n follows.
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Proposition 2.3. For all n ≥ 0 the following assertions hold true1:

(1) for all x ∈ ∆n there exists a unique mapping x
′ : ∆n - R such that

γn(x) = x
′ ◦ γn; the mapping x

′ is continuous;

(2) for all mappings x′ : ∆n - R such that x′ ◦ γn ∈ C∞ (In) there exists
a unique x ∈ ∆n such that γn(x) = x

′ ◦ γn;

(3) for all z ∈ C∞ (In) which factor through γn : I
n - ∆n, there exists a

unique x ∈ ∆n such that γn(x) = z.

Proof: From the proof of Proposition 2.1 it results that the diagram

H (C∞ (In))
H (γn)- H (∆n)

I
n

in
?

γn

- ∆n,

ιn
?

where ιn is the homeomorphism of (the proof of) Proposition 2.1 and in is deter-
mined by

x(in(p)) = p(x) ∀x ∈ C∞ (In) , p ∈ H (C∞ (In)) ,

is commutative. Therefore, since in is a homeomorphism onto I
n, the implication

γn(ξ1) = γn(ξ2) =⇒ γn(x)(ξ1) = γn(x)(ξ2)

holds for all ξ1, ξ2 ∈ C∞ (In) and x ∈ ∆n. From the implication the first part of
the item (1) follows.
A similar proof as the one of Proposition 2.2 shows that the topology of ∆n is

the terminal topology w.r.t. the mapping γn : I
n - ∆n. Hence the mapping

x′ is continuous, since γn(x) is.

The items (2) and (3) are apparently equivalent. We prove the item (2), by
induction on n. We deal with the existence part only, since the uniqueness is
straightforward. The assertion is obvious for n = 0, 1. Let us suppose, the
assertion is true for all n ≤ m, m ≥ 1; we shall prove it for n = m + 1. Let
x′ : ∆m+1 - R be such that x′ ◦ γm+1 ∈ C∞

(
I
m+1

)
. For all τ ∈ I we define

a mapping y′τ : ∆
m - R by the formula

y′τ (ξ) = x
′(βm+1(ξ, τ)) ∀ ξ ∈ ∆m.

Therefore we have
(y′τ ◦ γm)(ξ) = (x

′ ◦ γm+1)(ξ, τ).

1The symbol γn is overloaded in what follows — it denotes not only the monomorphism
γn : ∆n

- C∞ (In) but also the map γn : I
n - ∆n. The meaning is always clear from

the context.



20 T.Crhák

Hence y′τ ◦ γm ∈ C∞ (Im) and, by the induction hypothesis, there is a mapping
y : I - ∆m such that

γn(y(τ)) = y
′
τ ◦ γn.

From the definition of y it follows that y ∈ C∞ (I,∆m).
Use the formulae of the proof of Proposition 1.7, for βm+1 and βm, to show

that the map

ϕC∞(Im−1) ◦ C
∞ (I, γm−1) ◦ βm ◦ y

of the unit interval I into C∞
(
I
m−1

)
is constant. Then one derives from the

commutative diagram

C∞ (I,∆m−1)
ϕ∆m−1 - ∆m−1

C∞
(
I, C∞

(
I
m−1

))
C∞ (I, γm−1) ?

ϕC∞(Im−1)

- C∞
(

I
m−1

)
.

γm−1?

that also the map

γm−1 ◦ ϕ∆m−1
◦ βm ◦ y

is constant. Hence, since γm−1 is injective and d
m
m = ϕ∆m−1

◦βm (see (D3), p. 4),
the mapping C∞ (I, dm

m) (y) ∈ C∞ (I,∆m−1) is constant and, by the definition of
∆m+1, there is an element x ∈ ∆m such that βm+1(x) = y. For this x we have

γm+1(x) = x
′ ◦ γm+1,

as required. �

Corollary 2.1. The locally convex algebra ∆n can be identified with the locally

convex subalgebra of C∞ (In) consisting of the elements z ∈ C∞ (In) satisfying

z(τ1, · · · , τk−1, 0, τk+1, · · · , τn) = z(τ1, · · · , τk−1, 0, · · · , 0), ∀ τ1, · · · , τn ∈ I,

where k = 1, · · · , n.
The face and degeneracy operators are given as follows (cf. Example 1.1)

(diz)(τ1, · · · , τn) =

{
z(τ1, · · · , τi, 1, τi+1, · · · , τn), i < n+ 1

z(τ1, · · · , τn, 0), i = n+ 1

(siz)(τ1, · · · , τn+1) =

{
z(τ1, · · · , τi, τi+1τi+2, · · · , τn+1), i < n

z(τ1, · · · , τn+1), i = n.
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