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The property () of Orlicz-Bochner sequence spaces

Pawer KoLwicz

Abstract. A characterization of property () of an arbitrary Banach space is given. Next
it is proved that the Orlicz-Bochner sequence space lg(X) has the property (8) if and
only if both spaces l$ and X have it also. In particular the Lebesgue-Bochner sequence
space lp(X) has the property (3) iff X has the property (3). As a corollary we also obtain
a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped
with the Luxemburg norm the property (3), nearly uniform convexity, the drop property
and reflexivity are in pairs equivalent.
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1. Introduction

Let (X, ||-]|) be a real Banach space, B(X) and S(X) be the closed unit ball,
unit sphere of X, respectively. For any subset A of X, we denote by conv(A) the
convex hull of A.

The Banach space (X, || - ||) is uniformly convex (X € (UC) for short), if for
each € > 0 there is § > 0 such that for z,y € S(X) the inequality ||z — y|| > €
implies H% (+y)| <1-26 (see [4]).

Define for any « ¢ B(X) the drop D (z, B(X)) determined by = by

D (x,B(X)) = conv ({z} U B(X)).

A Banach space X has the drop property (X € (D)) if for every closed set C
disjoint with B(X) there exists an element = € C such that D (x, B(X))NC = {z}.

Recall that for any subset C of X, the Kuratowski measure of non-compactness
of C is the infimum «(C) of those € > 0 for which there is a covering of C' by a
finite number of sets of diameter less then e. Rolewicz in [20] has proved that X
is uniformly convex iff for any € > 0 there exists 6 > 0 such that 1 < ||z|| <14
implies diam (D(z, B(X)) \ B(X)) < e. In connection with this he has introduced
in [21] the following property.

A Banach space X has the property (8) (X € (8) for short) if for any € > 0
there exists 6 > 0 such that

a(D(z,B(X))\B(X)) <e

whenever 1 < ||z]] <14 4.
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We say that a sequence {z,} C X is e-separated for some € > 0 if
sep(zp) = inf {||zn, — zm|| : n #m} > e
The following characterization of the property (3) is very useful (see [14]):
A Banach space X has the property (3) if and only if for every ¢ > 0 there
exists § > 0 such that for each element = € B(X) and each sequence (z,) in B(X)

with sep (zp,) > € there is an index k for which

T+ T

<1-4.

A Banach space is said to be nearly uniformly convezr (X € (NUCQC)) if for every
€ > 0 there exists 6 € (0,1) such that for every sequence {z,} C B(X) with
sep(xn) > €, we have conv({zn}) N (1 — §)B(X) # 0.

The following implications are true in any Banach space

(UC) = (B) = (NUC) = (D) = (Rfx),

where (Rfx) denotes the reflexivity (see [9], [17] and [21]). Any of them cannot
be reversed in general. However the uniform convexity and the property (3) are
equivalent in Orlicz-Lorentz function spaces and the property (3) and reflexivity
are equivalent in Orlicz sequence spaces (see [5] and [12]).

The Banach space X is said to have uniformly Kadec-Klee property (X €
(UKK) for short) if for every ¢ > 0 there exists 6 € (0, 1) such that

(zn) C B(X)
(UKK) : T — = |zl|lx <1-0.

sep(zn) > €

It is known that X € (NUC) iff X € (UKK) and X is reflexive ([9]).

In this paper a characterization of the property (3) of an arbitrary Banach
space is given. This result enables us to consider the property (8) in Orlicz-
Bochner sequence spaces lg(X). One of the fundamental problems in these spaces
is the question of whether or not a geometrical property lifts from X to Ig(X).
Although the answer to such a question is often expected, the proof of such a
response is usually nontrivial. Considerations of that type for various kinds of
convexities for different spaces of Bochner type were done by many authors (see
for instance [1], [2], [3], [6], [8], [13], [18], [19]). We will prove that the Orlicz-
Bochner sequence space lg(X) has the property (3) if and only if both spaces lg
and X have it also.

Denote by N and R the sets of natural and real numbers, respectively.
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A map @ : R — [0,00) is said to be an Orlicz function if ® is vanishing at 0,
even, convex and not identically equal to zero. Let [0 stand for the space of all
real sequences. By the Orlicz sequence space we mean

lp = {xelo I (cx) Z@ (cz(i)) < oo for some c>0}

We endow lg with the so called Luzemburg norm defined by

|zl —1nf{e>0 I (6) < 1}

For every Orlicz function ® we define the complementary function ¥ : R —
[0,00) by the formula

¥(v) = sup {ulv| — ®(u)}
u>0

for every v € R. The complementary function ¥ is also an Orlicz function.
We say that the Orlicz function @ satisfies the da-condition (we write ® € d2)
if there exist constants kg > 2 and ug > 0 such that

(1) 0 < ®(up) < oo and ®(2u) < koP(u)

for every |u| < ug.

Now, let us define the type of spaces to be considered in this paper. For a
real Banach space (X, ||-||x), denote by M(N, X)), or just by M(X), the space of
sequences © = (zp) such that z, € X for all n € N. Define on M(X) a modular
Ip (z) by the formula

2) = @ (|l2(@)llx)-
i=1

Let
lo(X) = {z € M(X) : 20 = (lz(9) [l x)i2; €la}-

Then l,(X) equipped with the norm ||z|| = ||zg|/¢ becomes a Banach space which
is called the Orlicz-Bochner sequence space.

2. Auxiliary lemmas

Lemma 1. Suppose that ® € d2 with some constants ug and kg defined in (1).
Then
klim {(1+1/k)u)/®(u)} =1
—00

uniformly for all |u| < ug (Lemma 1.1 in [7]).
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Lemma 2. Ifz,y € X \ {0}, then

1., . ..
o+ ol < 3 06+ 9l + Dol + (1= 5 02 +.1 ) ol = ol

where & = z/ ||z|| (Lemma 1.1 in [8]).

Lemma 3. If ¥ € §y, then for every w > 0 with 0 < ®(w) < oo there exist
numbers a = a(w) € (0,1) and v = vy(a(w)) € (0,1) such that

B 2 (1) < S0 -0 + 2)

-2
for all u < w and v satisfying ‘%| <a.

PRrOOF: We will apply some methods from Lemma 1.1 in [3]. Let w > 0 satisfy
0 < ®(w) < oo. It is well known that

lim ¥ (v)

vV—00 v

=sup{u>0:P(u) <oo}.

Hence there exists vg = vg(w) such that 0 < ¥(vg) < oo and for every ¢ € (1,2)
we get
o (Eu) = sup{E lu| v — \Il(v)} = sup {E lu| v — \Il(v)}
2 v>0 2 0<v<vg 2

for every u < w. On the other hand, by ¥ € J2, we obtain that there exists a
number k = k(vp) such that ¥(2v) < kW¥(v) for every |v| < vg. Then, applying
Lemma 1, we conclude that there exists a number & € (1,2) such that ¥(£2v) <
26 (v) for every |v| < vg. Hence

AR _ ¢
(50) =g aie v} = {Se w00}

§ 1 2 } 1
< su —uv——\I/( v) < —®(u
2 {5t g (€0)} < geow
for every u < w. Then the proof can be easily finished (see [3]). O

Lemma 4. Let ® € §3. The following assertions are true:

(a) llzall =1 iff Ip(zn) = 1; N

(b) for every sequence () € l,(X) we have ||zp| — 0 iff I(xn) — 0;

(c) for every p € (0,1) there exists g € (0,1) such that the inequality Ig(z) <

1 —p implies ||z|| <1 —gq.

PROOF: (a) It was shown in [11].

(b) It is known that ||z,|| — 0 iff Ig (nz,) — 0 for any 5 > 0. Then, in view of
do-condition, one can complete the proof.

(c) The statement in the case X = R was proved in [10]. For an arbitrary
Banach space the proof is similar. ([
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3. Results

Theorem 1. A Banach space X has the property (3) if and only if for every
€g > 0 there exists dg > 0 such that for each element x € X\{0} and each sequence

(zn) in X\{0} with sep (W) > ¢q there is an index k for which
X

: 200 minfllel . o)
<50l + el (1 ek,
el + ol

T+ T
2

PrOOF: Necessity. Take ¢g > 0 and z € X\{0}. Let the sequence (zp) in
X\{0} be such that sep (” ” ) > €g. Define y = m and y, = ”x ” . Then
Y,yn € B(X) and sep(yn) > €. By the property (3) of X there exist a number
§ = 6(eo) an index k such that HH%HX <1-4. Let 6y = 0. If |zl x > loxllx,

then
g 2 x_kH _ M_z(;_;)u
20 lzllx  lellxllx  N2lzellx 2 \llzxllx  lzllx /llx
‘ T+ xp ’ T 1 1
» el o -
2zllx llx  "20x |lzellx  ll2llx

Hence a simple computation yields

1 260 min {7 x . |xllx }
< 5 (lellx + il x) (1— o)
ol + lleellx

T+ xp
2

If |z||x < ||kl x, then the proof is analogous.

Sufficiency. Let ¢ > 0 and ¢ € B(X). Take a sequence (z) in B(X)
with sep(zy) > e. Passing to subsequence, if necessary, we may assume that
|lznllx — 0,0 € [¢/2,1] and |zn|x > €/4 for every n € N. Then, applying
Lemma 2, we conclude that there exist a number eg = €p(€) > 0 and a subsequence

(¥n;)j21 C (zn)p=y such that sep (” ”X) > €g. Consequently

T+ ap 1 260 min {||z[| x , |zl x }
| < 3 el + el (1 - 20 el el
X ol x + lzrllx
for some k € (n;)52. If ||z]x < 1/2, then e || < 3 =1 1 Otherwise,
denoting a = min{1/2,¢/4}, we get
. —1
min {||2 x , 2k llx} _ <1+ maX{HfUHXaHiCkHX}) s L _ a
el x + llerll x min {{|zllx , zxllx} /) T 1+1 1+4a

r4+T)
2

Hence . <1- 250“ Taking §(e) = min { 200a 1 } we can finish the proof.

T+a
O
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Theorem 2. The following statements are equivalent:

(a) lp(w, X) has the property (8);

(b) both X and lg have the property (3);

(¢) X has the property (3) and lg is reflexive;
(d) X has the property (3), ® € d2 and ¥ € §s.

PROOF: (a) = (b). Since the spaces lp and X are embedded isometrically into
lg(X) and the property (3) is inherited by subspaces, lg and X have the prop-

erty (8).
(b) = (c). The property (3) implies reflexivity.
(¢) = (d). By the reflexivity of g we conclude that ® € d9 and ¥ € d9.

(d) = (a). Assume that X has the property (8), ® € d2 and ¥ € d3. Let
e>0and z € S(Ig(X)). Take a sequence (z,) in S(lg(X)) with sep(zp) > €. By
Lemma 4(b) we get that there exists a number o = o(e) € (0,1) such that

(3) inf Iy (zn — 2m) > 0.
n#m

Denote by = sup{u > 0 : ®(u) < oo}. Let wy = bg if ®(bg) < 1, otherwise
wo = ®71(1). In view of da-condition there exists a number k > 0 such that

(4) ® (2u) < k® (u)

for every |u| < wg. Take numbers a and v from Lemma 3 for the number w = wy.
Let I = 1/a. Then there exists a number k; such that ® (lu) < k;® (u) for every
|u] < wp. Consequently

(5) @ (au) > B (u)
for every |u| < wg/a, where 3 = 1/k;. Take a number ¢ > 0 satisfying
(6) ce < 3B0/8k.

For every sequence (y,)0% C (2)52 define the sets:

{ - min {||z(@)[ x, lyn(d)llx }
- max {[|2(6)||x llyn(0)llx }
e

)
min{”w(i)HX ) ||yn(l)||X}
) )}

" max {[|z(d)[|x , lyn(i

Note that if (:an)zozl C (In)?f:p then A( L) D A(:L‘n) and B(Ink) C B(xn).
Moreover for every sequence (yn)p; C (zn)pe; let

M@ = {n e v Sl Il )

max { ||z (7)| y , ||yn(l)||X}

> a for every nEN},

By, =N\4= < a for some nEN}.
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for every ¢ € N and
117(yn) = {Z € N: card M(yn)(i) < OO} and 127(yn) = N\Il

We divide the proof into two parts.
I. Assume that

Io (2xm,,) = Y @(le@lly) = ce.

iGB(zn)

We will denote A(xn) =A, B(xn) =B, M(xn)(l) = M(Z) for every ¢ € N, Il,(:(:n) =
I, and Iy ;) = I for short.

1. Suppose that

(7) Ig (wx1,) > ce.

We consider two cases:

a) Assume that there exists a subset Ip; C I2 such that f; (xX121) > ce/2 and
Nicr,, M(i) # 0. Consequently there exists ng € N such that ng € (;cp,, M(i).
Then, by Lemma 3, we get

> (|

i€la

)+ xno ()

)= X 30 @l + (e lx)-

i€la

Denote p; = 4 € (0,1). Thus
Iy (Tno) sl-gls (#X121) <1=p1.

Finally, by Lemma 4(c), we get Hﬁ# || < 1-—gq, where ¢; € (0,1) depends only
on p1.
b) Assume that for every subset I C Iz we have

(8) Ig (wx7) < ce/2 or (| M(i) = 0.
el

Define )
Jy = {ielgzcardM (i) <oo} and Jo = I \ Jp,

where

O 0 1| P G P
M) = Mg, { N (@l el )~ }
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for every ¢ € N. If f{;(.IXJl) > ce/2, then there exists a subset Ji3 C Jp sat-
isfying card J11 < oo and f{; (zxJ,,) > ce/4. This case is analogous to 1.a).
Hence, in view of (7), we conclude that Ip (zxJ,) = ce/2. Then, by (8), we
get (N;eg, M (i) = 0 and consequently ;¢ ;, M'(i) = N. For every i € Jy we
have card M (i) = oo and card M (i) = oo. Take i1 € Jo. Let (7n, )72, be
a subsequence of (z,,)7%; such that nj € M’ (iy) for every k € N. We obtain
11 € A(xnk) Hence A(Iﬂnk) D A(mn)7 B(Iﬂnk) C B(mn) and M(xnk)(z) - M(xn)(z)
for every ¢« € N. Furthermore 127(96%) C Iy (z,)- Thus after a finite number of
steps we get a subsequence which satisfies condition II.

2. Suppose that -
Is (wX12) < ce.
Hence j; (:cxh) > 1 — ce. We may assume that card I; < oo and f; (a:xh) >

1 — ce. Take iy € I;. We have card M (i1) < oo, so there exists a subsequence
(7n,, )72 C (wp)5e such that

min {[lo(in)llx , [, () x }
max {[|z(i1)| x , |zn, (i1 HX}_

for every k € N. For ig € I; we can find a subsequence (:C”k')j_—l ( nk)k
fi J
such that 2
min {Hw(ZQ)”X ) H‘T”kj (z )Hx}

maX{HI(Zé)HX ) Hxnk] (iz)"x}

for every j € N. In such a way we construct a sequence (2)0%; C (Tn)52,
satisfying

>a

min {[|z(D)l|x 2 (Dl x} -
max {[|2(i)]| x , ||zn(z)llx} B

for every n € N and ¢ € I;. But i{; (a:xh) >1—ceand I1 C A(Zn), so this
situation is considered in case II.

II. Suppose that
(9) Io (x4, ,) = > @(26)lx)>1—ce
1€A(n,)
for some subsequence ()52 C (zn)5e;. We may assume that card A(wnk) <

oo and still j; (IXA( )) > 1 — ce. Denote for simplicity (zn,) by (zn). We

divide this case into two parts.
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a) Suppose that there exists a subsequence (zy,; )72 ; C (zn )52 such that

(10) Io (20n,x8,, ) = 0/2

for every k € N. Denote for short B,y = B. Define By = {i € B : nj, € M(i)}.
Suppose that for every k € N we have By = (). Then

min {[|z(d)]| x , |zn,, (i) HX}
max{Ha: @)l x 5 lzn, (2) HX}_

for every i € B and k£ € N. Hence A(xnk) = N and this situation is considered in

case ILb). Thus we may assume that there exists kg € N such that By, # (. We
will prove that

(11) Iy (ZInkOXBko) > /8.

If B\ By, = 0, then By, = B and (11) holds trivially. Let B\ By, # (). Suppose
conversely that Ig (2xnk0XBkO) < 0/8. Then, in view of (4) and (10), we get

I (xnko XB\BkO) > 30/8k. Moreover

min { ()] x -

“max {23l x

T (1) X}

T (i)Hx}

B\ By, ={i€B >a

Consequently, by (5) and (9), we obtain

ce > Ip (xxB) = I (xXB\BkO) 2 1p (al’nko XB\BkO)

—~ 380
> Blp (x"koXB\Bko) > =5

but this is a contradiction with (6), so (11) is proved. On the other hand, by
Lemma 3, we get
X)

> o]
< L) (@0 + # (o, 0], )

ZEBkO
iEBkO

~ [T+ x —
Iy (ﬁ) <1- %Icp (wnkOXBkO) <1-po,

)+ &ny (1)
2

Hence

2
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$+xnk0

where py = {57 Finally, by Lemma 4(c), we conclude H <1 — qo, where

g2 € (0,1) depends only on pa.

b) Assume that there exists a subsequence (xp,)po; C (25)5%; such that

(12) I (20m,x8,, ) <0/2
7lk

for every k € N. Denote still this subsequence (zp,) by (), A(xnk) = A and
B(xnk) = B. We will show that

(13) inf I ((tn — Tm) X4) > 0/2.
n#m
Indeed, if not, then, by (3) and (12), for some n # m we would get
0 < Ig (tn = 2m) = Ip ((zn = 2m) Xa) + Ip (2 = 7m) X5)

g

<
2

1~ 1~
+ §Id> (2znxB) + EIQ (2zmxB) < o,
a contradiction, so (13) is true. Take A € R such that
(14) 0<\<a/8.

For every n # m there exists ig € A satisfying ||z (i0) — xm (i0)|| x = X ||z (i0)|| x-

g

Indeed, if not, then § < Io ((zn — 2m) x4) < A for some n # m. But this is
a contradiction with (14). Moreover, we will prove that the following condition
holds:

(4) there exist a subset A9 C A and a subsequence (zy,) C (2y) such that
l2n (i) — 2m(i)|| x = Ajz(i)||x for all n # m, i € Ag and

Iz () — zm ()| x < Allz(?)||x for every n # m and i € A\ Ap.

Denote by F4 the family of all nonempty subsets of the set A. We have
card A < co. Hence card Fy < oo.

1. Consider the element x1 and the sequence ()52 5. Then there exist a

o0
subsequence (xg)) = (xn)5—o and a subset A; € F4, such that
n=

[ENOREI0

¥ > A|z(i)||x for every n € N, i€ Ay and

ENOEER0

5 < Mz(@)||x for every i € A\ A and n € N.
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Denote y%l) = x1 and yfllj_l = xg) for every n € N.

(1) (1)

o0
2. Consider the element z7’ and the sequence (xn ) . Then there exist a
n=

2\ (DY
subsequence (azn ) - (a:n ) and a subset Ag € F4 such that

n=1 n=2

[ERHOEEERI0

¥ > A|z(i)|| x for every n € N, i € Ag and

H:Cgl)(z) - :vg)(i)HX < A|z(7)|| x for every i € A\ Ag and n € N.

Denote ygg) = xgl) and yy(i)_l = xg) for every n € N. Taking the next steps we

conclude that there exists a set Ag € F4, a sequence (ji)p—; of natural numbers

. o0
and a sequence of subsequences (y,(f k )> x k=1,2,... such that
n=

(ygjl)):):l - (y’(ljZ)):):l o

and for every k € N we get

ot @ - v )

¥ > Alx(2)||x for every n € Nyn > 2, i € Ag and

Hygjk)(z) - y,(fk)(z)HX < A|x(@)|| xy for everyne N, n>2,ie A\ Ap.
Define z, = y§j n) for every n € N. In such a way we have constructed the
sequence (zp)n2; satisfying the condition (4). Denote this subsequence still by
(zn). Furthermore, we will prove that

(15) Iy (220X 4,) > 0/4

for every n € N except at most two elements. Suppose conversely that j; (an X Ao)
< o/4 for n € {n1,n2}. By condition (4) we obtain ||y, (1) — zn, ()|l x <
M|z(7)|| x for every i € A\ Ag. Hence, by (13) and (14), we get

o — — —
b) < I ((‘rnl - Inz) XA) = I ((Inl - 33n2) XAO) +1s ((517m - 33n2) XA\AO)
30

1~ 1~
< EI(I) (2$TL1XAO) + §I<I> (ZIWZXA()) +A< ?7

which is a contradiction.
Note that ||z(7)|| x > 0 and |25 (i)||x > 0 for every i € A and n € N. For every
1 € Ag define the sequence

) = (24)" cx.

2@l x / =1
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By condition (4) we conclude that for every i € Ag we have sep {yn (i)} x > A.
Moreover [lyn(i)||y € [a,1/a] for every n € N and ¢ € A. Let i1 € Ag. Passing
to a subsequence if necessary, we may assume that lim, oo [|[yn(i1)|x = ¥1 €
[a,1/a]. Furthermore, applying Lemma 2, we conclude that there exist a number
A1 = A1(A, y1) and a subsequence (yn,,)7>; of (yn)p—; such that

sep {yny, (11)/ [lym, (i)l x }y = A1

Moreover, the function A1(},-) is nonincreasing. Let A\g = A1()\,1/a). Then

sep {yn;. (i1)/ llyn;. (i) x } x = Ao-

Take ip € Ag and consider a sequence (yn, (i2))pe;. Similarly we deduce that
there exists a subsequence (ynkj )521 C (yny )52y such that

sep {wm, (02)/ [y, )]} = 2o.

Because card A < 00, so in such a way we can find a sequence (v,)0% 1 C (yn)52,
satisfying
sep {vn(9)/ lvn (D)l x}x = Ao

for every i € Ag. Denote still this subsequence by (yy). But

sep {yn(0)/ [lyn (D)l x } x = sep {zn )/ [lzn (@)l x } x -

Basing on Theorem 1 take a number §y = dp(Ag). For every i € Ay we consider an
element z(7) € X\{0} and a sequence (z,(¢)) in X \{0} with sep (%) > Ao.
Hence there exists a number ng = ng(i) € N such that
x(2) + Tno (7) ’

2 X
< Je@lx + o ()llx <1 _ 20 min {[l2(8) x . |:cno<i>||x}> |

- 2 (@) x + ll2no (0)] x

(16)

For every i € Ag and every sequence (un(i));—; C (2n(7))peq C X, define
N (i, (un (7)) = {n = n(i) € N: z(i),un (i) satisfies (16)}.

Let i1 € Ap. The property (8) of X implies that card N (i1, (zn(i1))) = oo.
Thus we can find in X a subsequence (zn,(i1))j—; C (zn(i1))y—; such that
x(i1), Tn, (1) satisfies the inequality (16) for every k € N. Consider the sequence
(#ny, (i2))5e ;- Similarly card N (ig, (2, (i2))) = oo. Consequently there exists a

subsequence (xnkj (12));).;1 C (ny,(i2)) 5o such that x(ig),xnkj (i2) satisfies the
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inequality (16) for every j € N. After a finite number of steps we may construct in
l3(X) a subsequence (zm,)ro_; C (@n)pey such that for every i € Ag, z(i), xm(7)
satisfies the inequality (16) for every m € N. Because of the fact that

min {[|2(0) | x » [[#m (D) x}

- - >a forevery me Nandi € A
max {[|z()| x , l#m () x }

we obtain

Uz@)llx + lzm @l x) (1 = a),

E

for every m € N and i € Ag, where a = 16 2 Then

o]

i€Ap

+

)+ Im(l)

1 . ,
)= 3 50 @@l + # ()

i€AQ

for every m € N. Applying (15), it is easy to finish the proof in the same way as
in the case IL.a). O

Remark. It is worth to mention that the property (3) does not lift from X into
Lg (X) in the case when Lg is a function Orlicz space. It is enough to consider
the Lebesgue-Bochner space Lp(p, X) when 1 < p < oo and p is the Lebesgue
measure on [0,1]. Then if X is not uniformly convex, then Ly,(u, X) has not
even the uniformly Kadec Klee property (Theorem 3.4.9 in [16]). Moreover, if
Lg(X) € (B), then obviously Lg € (8) and X € (8). But Ly € (B) iff Ly €
(UC) (see [5]). If we additionally assume that X € (UC), then Lg(X) € (UC)
(Theorem 3.4.3 in [16]).

As an immediate consequence of Theorem 2, we get the following characteri-
zation of the property (3) in Orlicz sequence spaces with the Luxemburg norm
proved directly in [5].

Corollary 1. Let ® be an Orlicz function. The following statements are equiv-
alent:

(a) lg has the property (3);

(b) lp is (NUC);

(c) lg has the property (D);

(d) @ and ¥ satisfy the d2-condition, i.e. lg is reflexive.

PROOF: It is enough to apply Theorem 2 with X = R which is uniformly convex,
so it has also the property (3). O

Corollary 2. The Lebesgue-Bochner sequence space IP(X) (1 < p < oo) has
the property (8) iff X has the property (3).

Proor: The sequence space I, is an Orlicz sequence space generated by the Orlicz
function ®(u) = |ulP satisfying all the assumptions of Theorem 2. O
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