The property (β) of Orlicz-Bochner sequence spaces

PAWEŁ KOLWICZ

Abstract. A characterization of property (β) of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space $l_{\Phi}(X)$ has the property (β) if and only if both spaces l_{Φ} and X have it also. In particular the Lebesgue-Bochner sequence space $l_p(X)$ has the property (β) iff X has the property (β) . As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property (β) , nearly uniform convexity, the drop property and reflexivity are in pairs equivalent.

Keywords: Orlicz-Bochner space, property (β), Orlicz space Classification: 46E30, 46E40, 46B20

1. Introduction

Let $(X, \|\cdot\|)$ be a real Banach space, B(X) and S(X) be the closed unit ball, unit sphere of X, respectively. For any subset A of X, we denote by conv(A) the convex hull of A.

The Banach space $(X, \|\cdot\|)$ is uniformly convex $(X \in (\mathbf{UC})$ for short), if for each $\epsilon > 0$ there is $\delta > 0$ such that for $x, y \in S(X)$ the inequality $||x - y|| > \epsilon$ implies $||\frac{1}{2}(x + y)|| < 1 - \delta$ (see [4]).

Define for any $x \notin B(X)$ the drop D(x, B(X)) determined by x by

$$D(x, B(X)) = \operatorname{conv}(\{x\} \cup B(X)).$$

A Banach space X has the drop property $(X \in (\mathbf{D}))$ if for every closed set C disjoint with B(X) there exists an element $x \in C$ such that $D(x, B(X)) \cap C = \{x\}$.

Recall that for any subset C of X, the Kuratowski measure of non-compactness of C is the infimum $\alpha(C)$ of those $\epsilon > 0$ for which there is a covering of C by a finite number of sets of diameter less then ϵ . Rolewicz in [20] has proved that Xis uniformly convex iff for any $\epsilon > 0$ there exists $\delta > 0$ such that $1 < ||x|| < 1 + \delta$ implies diam $(D(x, B(X)) \setminus B(X)) < \epsilon$. In connection with this he has introduced in [21] the following property.

A Banach space X has the property (β) $(X \in (\beta)$ for short) if for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$\alpha \left(D\left(x, B(X)\right) \setminus B(X) \right) < \epsilon$$

whenever $1 < ||x|| < 1 + \delta$.

We say that a sequence $\{x_n\} \subset X$ is ϵ -separated for some $\epsilon > 0$ if

$$\operatorname{sep}(x_n) = \inf \left\{ \|x_n - x_m\| : n \neq m \right\} > \epsilon.$$

The following characterization of the property (β) is very useful (see [14]):

A Banach space X has the property (β) if and only if for every $\epsilon > 0$ there exists $\delta > 0$ such that for each element $x \in B(X)$ and each sequence (x_n) in B(X) with $\operatorname{sep}(x_n) \ge \epsilon$ there is an index k for which

$$\left\|\frac{x+x_k}{2}\right\| \le 1-\delta.$$

A Banach space is said to be *nearly uniformly convex* $(X \in (\mathbf{NUC}))$ if for every $\epsilon > 0$ there exists $\delta \in (0,1)$ such that for every sequence $\{x_n\} \subseteq B(X)$ with $\operatorname{sep}(x_n) > \epsilon$, we have $\operatorname{conv}(\{x_n\}) \cap (1-\delta)B(X) \neq \emptyset$.

The following implications are true in any Banach space

$$(\mathbf{UC}) \Rightarrow (\boldsymbol{\beta}) \Rightarrow (\mathbf{NUC}) \Rightarrow (\mathbf{D}) \Rightarrow (\mathbf{Rfx}),$$

where (**Rfx**) denotes the reflexivity (see [9], [17] and [21]). Any of them cannot be reversed in general. However the uniform convexity and the property (β) are equivalent in Orlicz-Lorentz function spaces and the property (β) and reflexivity are equivalent in Orlicz sequence spaces (see [5] and [12]).

The Banach space X is said to have uniformly Kadec-Klee property $(X \in (\mathbf{UKK}) \text{ for short})$ if for every $\epsilon > 0$ there exists $\delta \in (0, 1)$ such that

$$(\mathbf{UKK}): \begin{array}{c} (x_n) \subset B(X) \\ x_n \xrightarrow{w} x \\ \operatorname{sep}(x_n) \ge \epsilon \end{array} \right\} \implies \|x\|_X < 1 - \delta.$$

It is known that $X \in (\mathbf{NUC})$ iff $X \in (\mathbf{UKK})$ and X is reflexive ([9]).

In this paper a characterization of the property (β) of an arbitrary Banach space is given. This result enables us to consider the property (β) in Orlizz-Bochner sequence spaces $l_{\Phi}(X)$. One of the fundamental problems in these spaces is the question of whether or not a geometrical property lifts from X to $l_{\Phi}(X)$. Although the answer to such a question is often expected, the proof of such a response is usually nontrivial. Considerations of that type for various kinds of convexities for different spaces of Bochner type were done by many authors (see for instance [1], [2], [3], [6], [8], [13], [18], [19]). We will prove that the Orlicz-Bochner sequence space $l_{\Phi}(X)$ has the property (β) if and only if both spaces l_{Φ} and X have it also.

Denote by \mathbb{N} and \mathbb{R} the sets of natural and real numbers, respectively.

A map $\Phi : \mathbb{R} \to [0, \infty)$ is said to be an *Orlicz function* if Φ is vanishing at 0, even, convex and not identically equal to zero. Let l^0 stand for the space of all real sequences. By the *Orlicz sequence space* we mean

$$l_{\Phi} = \left\{ x \in l^0 : I_{\Phi}(cx) = \sum_{i=1}^{\infty} \Phi\left(cx(i)\right) < \infty \text{ for some } c > 0 \right\}.$$

We endow l_{Φ} with the so called *Luxemburg norm* defined by

$$||x||_{\Phi} = \inf \left\{ \epsilon > 0 : I_{\Phi}\left(\frac{x}{\epsilon}\right) \le 1 \right\}.$$

For every Orlicz function Φ we define the complementary function $\Psi : \mathbb{R} \longrightarrow [0,\infty)$ by the formula

$$\Psi(v) = \sup_{u>0} \left\{ u|v| - \Phi(u) \right\}$$

for every $v \in \mathbb{R}$. The complementary function Ψ is also an Orlicz function.

We say that the Orlicz function Φ satisfies the δ_2 -condition (we write $\Phi \in \delta_2$) if there exist constants $k_0 > 2$ and $u_0 > 0$ such that

(1)
$$0 < \Phi(u_0) < \infty \text{ and } \Phi(2u) \le k_0 \Phi(u)$$

for every $|u| \leq u_0$.

Now, let us define the type of spaces to be considered in this paper. For a real Banach space $\langle X, \|\cdot\|_X \rangle$, denote by $\mathcal{M}(\mathbb{N}, X)$, or just by $\mathcal{M}(X)$, the space of sequences $x = (x_n)$ such that $x_n \in X$ for all $n \in \mathbb{N}$. Define on $\mathcal{M}(X)$ a modular $\widetilde{I_{\Phi}}(x)$ by the formula

$$\widetilde{I_{\Phi}}(x) = \sum_{i=1}^{\infty} \Phi\left(\|x(i)\|_X \right).$$

Let

$$l_{\Phi}(X) = \left\{ x \in \mathcal{M}(X) : x_0 = (\|x(i)\|_X)_{i=1}^{\infty} \in l_{\Phi} \right\}.$$

Then $l_{\varphi}(X)$ equipped with the norm $||x|| = ||x_0||_{\Phi}$ becomes a Banach space which is called the Orlicz-Bochner sequence space.

2. Auxiliary lemmas

Lemma 1. Suppose that $\Phi \in \delta_2$ with some constants u_0 and k_0 defined in (1). Then

$$\lim_{k \to \infty} \left\{ \Phi\left(\left(1 + 1/k \right) u \right) / \Phi\left(u \right) \right\} = 1$$

uniformly for all $|u| \leq u_0$ (Lemma 1.1 in [7]).

Lemma 2. If $x, y \in X \setminus \{0\}$, then

$$\|x+y\| \le \frac{1}{2} \|\hat{x}+\hat{y}\| \left(\|x\|+\|y\|\right) + \left(1 - \frac{1}{2} \|\hat{x}+\hat{y}\|\right) \|\|x\|-\|y\||,$$

where $\hat{x} = x / ||x||$ (Lemma 1.1 in [8]).

Lemma 3. If $\Psi \in \delta_2$, then for every w > 0 with $0 < \Phi(w) < \infty$ there exist numbers $a = a(w) \in (0, 1)$ and $\gamma = \gamma(a(w)) \in (0, 1)$ such that

(2)
$$\Phi\left(\frac{u+v}{2}\right) \leq \frac{1}{2}(1-\gamma)(\Phi(u) + \Phi(v))$$

for all $u \leq w$ and v satisfying $\left|\frac{v}{u}\right| \leq a$.

PROOF: We will apply some methods from Lemma 1.1 in [3]. Let w > 0 satisfy $0 < \Phi(w) < \infty$. It is well known that

$$\lim_{v \to \infty} \frac{\Psi(v)}{v} = \sup \left\{ u > 0 : \Phi(u) < \infty \right\}.$$

Hence there exists $v_0 = v_0(w)$ such that $0 < \Psi(v_0) < \infty$ and for every $c \in (1, 2)$ we get

$$\Phi\left(\frac{c}{2}u\right) = \sup_{v>0} \left\{\frac{c}{2} |u| v - \Psi(v)\right\} = \sup_{0 < v \le v_0} \left\{\frac{c}{2} |u| v - \Psi(v)\right\}$$

for every $u \leq w$. On the other hand, by $\Psi \in \delta_2$, we obtain that there exists a number $k = k(v_0)$ such that $\Psi(2v) \leq k\Psi(v)$ for every $|v| \leq v_0$. Then, applying Lemma 1, we conclude that there exists a number $\xi \in (1,2)$ such that $\Psi(\xi^2 v) \leq 2\xi\Psi(v)$ for every $|v| \leq v_0$. Hence

$$\Phi\left(\frac{\xi}{2}u\right) = \sup_{v \ge 0} \left\{\frac{\xi}{2}|u|v - \Psi(v)\right\} = \sup_{0 < v \le v_0} \left\{\frac{\xi}{2}|u|v - \Psi(v)\right\}$$
$$\leq \sup_{0 < v \le v_0} \left\{\frac{\xi}{2}|u|v - \frac{1}{2\xi}\Psi\left(\xi^2v\right)\right\} \le \frac{1}{2\xi}\Phi(u)$$

for every $u \leq w$. Then the proof can be easily finished (see [3]).

Lemma 4. Let $\Phi \in \delta_2$. The following assertions are true:

- (a) $||x_n|| = 1$ iff $I_{\Phi}(x_n) = 1$;
- (b) for every sequence $(x_n) \in l_{\varphi}(X)$ we have $||x_n|| \to 0$ iff $\widetilde{I_{\Phi}}(x_n) \to 0$;
- (c) for every $p \in (0,1)$ there exists $q \in (0,1)$ such that the inequality $\widetilde{I}_{\Phi}(x) \leq 1-p$ implies $||x|| \leq 1-q$.

PROOF: (a) It was shown in [11].

(b) It is known that $||x_n|| \to 0$ iff $\widetilde{I_{\Phi}}(\eta x_n) \to 0$ for any $\eta > 0$. Then, in view of δ_2 -condition, one can complete the proof.

(c) The statement in the case $X = \mathbb{R}$ was proved in [10]. For an arbitrary Banach space the proof is similar.

3. Results

Theorem 1. A Banach space X has the property (β) if and only if for every $\epsilon_0 > 0$ there exists $\delta_0 > 0$ such that for each element $x \in X \setminus \{0\}$ and each sequence (x_n) in $X \setminus \{0\}$ with sep $\left(\frac{x_n}{\|x_n\|_X}\right) \ge \epsilon_0$ there is an index k for which

$$\left\|\frac{x+x_k}{2}\right\|_X \le \frac{1}{2} \left(\|x\|_X + \|x_k\|_X\right) \left(1 - \frac{2\delta_0 \min\{\|x\|_X, \|x_k\|_X\}}{\|x\|_X + \|x_k\|_X}\right).$$

PROOF: Necessity. Take $\epsilon_0 > 0$ and $x \in X \setminus \{0\}$. Let the sequence (x_n) in $X \setminus \{0\}$ be such that sep $\left(\frac{x_n}{\|x_n\|_X}\right) \ge \epsilon_0$. Define $y = \frac{x}{\|x\|_X}$ and $y_n = \frac{x_n}{\|x_n\|_X}$. Then $y, y_n \in B(X)$ and $\operatorname{sep}(y_n) \ge \epsilon_0$. By the property (β) of X there exist a number $\delta = \delta(\epsilon_0)$ an index k such that $\left\|\frac{y+y_k}{2}\right\|_X \le 1-\delta$. Let $\delta_0 = \delta$. If $\|x\|_X \ge \|x_k\|_X$, then

$$1 - \delta_0 \ge \frac{1}{2} \left\| \frac{x}{\|x\|_X} + \frac{x_k}{\|x_k\|_X} \right\|_X = \left\| \frac{x + x_k}{2 \|x_k\|_X} - \frac{x}{2} \left(\frac{1}{\|x_k\|_X} - \frac{1}{\|x\|_X} \right) \right\|_X$$
$$\ge \left\| \frac{x + x_k}{2 \|x_k\|_X} \right\|_X - \left\| \frac{x}{2} \right\|_X \left| \frac{1}{\|x_k\|_X} - \frac{1}{\|x\|_X} \right|.$$

Hence a simple computation yields

$$\left\|\frac{x+x_k}{2}\right\|_X \le \frac{1}{2} \left(\|x\|_X + \|x_k\|_X\right) \left(1 - \frac{2\delta_0 \min\left\{\|x\|_X, \|x_k\|_X\right\}}{\|x\|_X + \|x_k\|_X}\right).$$

If $||x||_X < ||x_k||_X$, then the proof is analogous.

Sufficiency. Let $\epsilon > 0$ and $x \in B(X)$. Take a sequence (x_n) in B(X) with $\operatorname{sep}(x_n) \geq \epsilon$. Passing to subsequence, if necessary, we may assume that $||x_n||_X \to b, b \in [\epsilon/2, 1]$ and $||x_n||_X \geq \epsilon/4$ for every $n \in \mathbb{N}$. Then, applying Lemma 2, we conclude that there exist a number $\epsilon_0 = \epsilon_0(\epsilon) > 0$ and a subsequence $(x_{n_j})_{j=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$ such that $\operatorname{sep}\left(\frac{x_{n_j}}{||x_{n_j}||_X}\right) \geq \epsilon_0$. Consequently

$$\left\|\frac{x+x_k}{2}\right\|_X \le \frac{1}{2} \left(\|x\|_X + \|x_k\|_X\right) \left(1 - \frac{2\delta_0 \min\left\{\|x\|_X, \|x_k\|_X\right\}}{\|x\|_X + \|x_k\|_X}\right)$$

for some $k \in (n_j)_{j=1}^{\infty}$. If $||x||_X < 1/2$, then $\left\|\frac{x+x_k}{2}\right\|_X \le \frac{3}{4} = 1 - \frac{1}{4}$. Otherwise, denoting $a = \min\{1/2, \epsilon/4\}$, we get

$$\frac{\min\left\{\|x\|_X, \|x_k\|_X\right\}}{\|x\|_X + \|x_k\|_X} = \left(1 + \frac{\max\left\{\|x\|_X, \|x_k\|_X\right\}}{\min\left\{\|x\|_X, \|x_k\|_X\right\}}\right)^{-1} \ge \frac{1}{1 + \frac{1}{a}} = \frac{a}{1 + a}$$

Hence $\left\|\frac{x+x_k}{2}\right\|_X \leq 1 - \frac{2\delta_0 a}{1+a}$. Taking $\delta(\epsilon) = \min\left\{\frac{2\delta_0 a}{1+a}, \frac{1}{4}\right\}$ we can finish the proof.

Theorem 2. The following statements are equivalent:

- (a) $l_{\Phi}(\mu, X)$ has the property (β);
- (b) both X and l_{Φ} have the property (β);
- (c) X has the property (β) and l_{Φ} is reflexive;
- (d) X has the property (β) , $\Phi \in \delta_2$ and $\Psi \in \delta_2$.

PROOF: (a) \Rightarrow (b). Since the spaces l_{Φ} and X are embedded isometrically into $l_{\Phi}(X)$ and the property (β) is inherited by subspaces, l_{Φ} and X have the property (β).

- (b) \Rightarrow (c). The property (β) implies reflexivity.
- (c) \Rightarrow (d). By the reflexivity of l_{Φ} we conclude that $\Phi \in \delta_2$ and $\Psi \in \delta_2$.

(d) \Rightarrow (a). Assume that X has the property (β), $\Phi \in \delta_2$ and $\Psi \in \delta_2$. Let $\epsilon > 0$ and $x \in S(l_{\Phi}(X))$. Take a sequence (x_n) in $S(l_{\Phi}(X))$ with $sep(x_n) \ge \epsilon$. By Lemma 4(b) we get that there exists a number $\sigma = \sigma(\epsilon) \in (0, 1)$ such that

(3)
$$\inf_{n \neq m} \widetilde{I_{\Phi}} (x_n - x_m) \ge \sigma.$$

Denote $b_{\Phi} = \sup\{u > 0 : \Phi(u) < \infty\}$. Let $w_0 = b_{\Phi}$ if $\Phi(b_{\Phi}) < 1$, otherwise $w_0 = \Phi^{-1}(1)$. In view of δ_2 -condition there exists a number k > 0 such that

(4)
$$\Phi(2u) \le k\Phi(u)$$

for every $|u| \leq w_0$. Take numbers a and γ from Lemma 3 for the number $w = w_0$. Let l = 1/a. Then there exists a number k_l such that $\Phi(lu) \leq k_l \Phi(u)$ for every $|u| \leq w_0$. Consequently

(5)
$$\Phi\left(au\right) \ge \beta \Phi\left(u\right)$$

for every $|u| \leq w_0/a$, where $\beta = 1/k_l$. Take a number c > 0 satisfying

(6)
$$c\epsilon < 3\beta\sigma/8k.$$

For every sequence $(y_n)_{n=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$ define the sets:

$$A_{(y_n)} = \left\{ i \in \mathbb{N} : \frac{\min\{\|x(i)\|_X, \|y_n(i)\|_X\}}{\max\{\|x(i)\|_X, \|y_n(i)\|_X\}} \ge a \text{ for every } n \in \mathbb{N} \right\},\$$
$$B_{(y_n)} = \mathbb{N} \setminus A = \left\{ i \in \mathbb{N} : \frac{\min\{\|x(i)\|_X, \|y_n(i)\|_X\}}{\max\{\|x(i)\|_X, \|y_n(i)\|_X\}} < a \text{ for some } n \in \mathbb{N} \right\}.$$

Note that if $(x_{n_k})_{k=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$, then $A_{(x_{n_k})} \supset A_{(x_n)}$ and $B_{(x_{n_k})} \subset B_{(x_n)}$. Moreover for every sequence $(y_n)_{n=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$ let

$$M_{(y_n)}(i) = \left\{ n \in \mathbb{N} : \frac{\min\left\{ \|x(i)\|_X, \|y_n(i)\|_X \right\}}{\max\left\{ \|x(i)\|_X, \|y_n(i)\|_X \right\}} < a \right\}$$

for every $i \in \mathbb{N}$ and

$$I_{1,(y_n)} = \left\{ i \in \mathbb{N} : \text{card } M_{(y_n)}(i) < \infty \right\} \text{ and } I_{2,(y_n)} = \mathbb{N} \setminus I_1.$$

We divide the proof into two parts.

I. Assume that

$$\widetilde{I_{\Phi}}\left(x\chi_{B_{(xn)}}\right) = \sum_{i\in B_{(xn)}} \Phi\left(\|x(i)\|_X\right) \ge c\epsilon.$$

We will denote $A_{(x_n)} = A$, $B_{(x_n)} = B$, $M_{(x_n)}(i) = M(i)$ for every $i \in \mathbb{N}$, $I_{1,(x_n)} = I_1$, and $I_{2,(x_n)} = I_2$ for short.

1. Suppose that

(7)
$$\widetilde{I_{\Phi}}(x\chi_{I_2}) \ge c\epsilon.$$

We consider two cases:

a) Assume that there exists a subset $I_{21} \subset I_2$ such that $\widetilde{I_{\Phi}}(x\chi_{I_{21}}) \ge c\epsilon/2$ and $\bigcap_{i \in I_{21}} M(i) \ne \emptyset$. Consequently there exists $n_0 \in \mathbb{N}$ such that $n_0 \in \bigcap_{i \in I_{21}} M(i)$. Then, by Lemma 3, we get

$$\sum_{i \in I_{21}} \Phi\left(\left\| \frac{x(i) + x_{n_0}(i)}{2} \right\|_X \right) \le \sum_{i \in I_{21}} \frac{1}{2} (1 - \gamma) \left(\Phi\left(\|x(i)\|_X \right) + \Phi\left(\|x_{n_0}(i)\|_X \right) \right).$$

Denote $p_1 = \frac{\gamma c \epsilon}{4} \in (0, 1)$. Thus

$$\widetilde{I_{\Phi}}\left(\frac{x+x_{n_0}}{2}\right) \le 1 - \frac{\gamma}{2}\widetilde{I_{\Phi}}\left(x\chi_{I_{21}}\right) \le 1 - p_1$$

Finally, by Lemma 4(c), we get $\left\|\frac{x+x_{n_0}}{2}\right\| \le 1-q_1$, where $q_1 \in (0,1)$ depends only on p_1 .

b) Assume that for every subset $I \subset I_2$ we have

(8)
$$\widetilde{I_{\Phi}}(x\chi_I) < c\epsilon/2 \text{ or } \bigcap_{i \in I} M(i) = \emptyset.$$

Define

$$J_1 = \left\{ i \in I_2 : \text{card } M'(i) < \infty \right\} \text{ and } J_2 = I_2 \setminus J_1,$$

where

$$M'(i) = M'_{(x_n)}(i) = \left\{ n \in \mathbb{N} : \frac{\min\{\|x(i)\|_X, \|x_n(i)\|_X\}}{\max\{\|x(i)\|_X, \|x_n(i)\|_X\}} \ge a \right\}$$

for every $i \in \mathbb{N}$. If $\widetilde{I_{\Phi}}(x\chi_{J_1}) \geq c\epsilon/2$, then there exists a subset $J_{11} \subset J_1$ satisfying card $J_{11} < \infty$ and $\widetilde{I_{\Phi}}(x\chi_{J_{11}}) \geq c\epsilon/4$. This case is analogous to 1.a). Hence, in view of (7), we conclude that $\widetilde{I_{\Phi}}(x\chi_{J_2}) \geq c\epsilon/2$. Then, by (8), we get $\bigcap_{i \in J_2} M(i) = \emptyset$ and consequently $\bigcup_{i \in J_2} M'(i) = \mathbb{N}$. For every $i \in J_2$ we have card $M(i) = \infty$ and card $M'(i) = \infty$. Take $i_1 \in J_2$. Let $(x_{n_k})_{k=1}^{\infty}$ be a subsequence of $(x_n)_{n=1}^{\infty}$ such that $n_k \in M'(i_1)$ for every $k \in \mathbb{N}$. We obtain $i_1 \in A_{(x_{n_k})}$. Hence $A_{(x_{n_k})} \supset A_{(x_n)}$, $B_{(x_{n_k})} \subset B_{(x_n)}$ and $M_{(x_{n_k})}(i) \subset M_{(x_n)}(i)$ for every $i \in \mathbb{N}$. Furthermore $I_{2,(x_{n_k})} \subset I_{2,(x_n)}$. Thus after a finite number of steps we get a subsequence which satisfies condition II.

2. Suppose that

$$\widetilde{I_{\Phi}}\left(x\chi_{I_{2}}\right) < c\epsilon.$$

Hence $\widetilde{I_{\Phi}}(x\chi_{I_1}) > 1 - c\epsilon$. We may assume that card $I_1 < \infty$ and $\widetilde{I_{\Phi}}(x\chi_{I_1}) \ge 1 - c\epsilon$. Take $i_1 \in I_1$. We have card $M(i_1) < \infty$, so there exists a subsequence $(x_{n_k})_{k=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$ such that

$$\frac{\min\left\{\|x(i_1)\|_X, \|x_{n_k}(i_1)\|_X\right\}}{\max\left\{\|x(i_1)\|_X, \|x_{n_k}(i_1)\|_X\right\}} \ge a$$

for every $k \in \mathbb{N}$. For $i_2 \in I_1$ we can find a subsequence $(x_{n_{k_j}})_{j=1}^{\infty} \subset (x_{n_k})_{k=1}^{\infty}$ such that

$$\frac{\min\left\{\|x(i_2)\|_X, \|x_{n_{k_j}}(i_2)\|_X\right\}}{\max\left\{\|x(i_2)\|_X, \|x_{n_{k_j}}(i_2)\|_X\right\}} \ge a$$

for every $j \in \mathbb{N}$. In such a way we construct a sequence $(z_n)_{n=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$ satisfying

$$\frac{\min\{\|x(i)\|_X, \|z_n(i)\|_X\}}{\max\{\|x(i)\|_X, \|z_n(i)\|_X\}} \ge a$$

for every $n \in \mathbb{N}$ and $i \in I_1$. But $\widetilde{I_{\Phi}}(x\chi_{I_1}) \geq 1 - c\epsilon$ and $I_1 \subset A_{(z_n)}$, so this situation is considered in case II.

II. Suppose that

(9)
$$\widetilde{I_{\Phi}}\left(x\chi_{A_{(xn_k)}}\right) = \sum_{i \in A_{(xn_k)}} \Phi\left(\|x(i)\|_X\right) > 1 - c\epsilon$$

for some subsequence $(x_{n_k})_{k=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$. We may assume that card $A_{(x_{n_k})} < \infty$ and still $\widetilde{I_{\Phi}}\left(x\chi_{A_{(x_{n_k})}}\right) \geq 1 - c\epsilon$. Denote for simplicity (x_{n_k}) by (x_n) . We divide this case into two parts.

a) Suppose that there exists a subsequence $(x_{n_k})_{k=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$ such that

(10)
$$\widetilde{I_{\Phi}}\left(2x_{n_k}\chi_{B_{(x_n)}}\right) \ge \sigma/2$$

for every $k \in \mathbb{N}$. Denote for short $B_{(x_n)} = B$. Define $B_k = \{i \in B : n_k \in M(i)\}$. Suppose that for every $k \in \mathbb{N}$ we have $B_k = \emptyset$. Then

$$\frac{\min\left\{\|x(i)\|_X, \|x_{n_k}(i)\|_X\right\}}{\max\left\{\|x(i)\|_X, \|x_{n_k}(i)\|_X\right\}} \ge a$$

for every $i \in B$ and $k \in \mathbb{N}$. Hence $A_{(x_{n_k})} = \mathbb{N}$ and this situation is considered in case II.b). Thus we may assume that there exists $k_0 \in \mathbb{N}$ such that $B_{k_0} \neq \emptyset$. We will prove that

(11)
$$\widetilde{I_{\Phi}}\left(2x_{n_{k_0}}\chi_{B_{k_0}}\right) \ge \sigma/8.$$

If $B \setminus B_{k_0} = \emptyset$, then $B_{k_0} = B$ and (11) holds trivially. Let $B \setminus B_{k_0} \neq \emptyset$. Suppose conversely that $\widetilde{I_{\Phi}}\left(2x_{n_{k_0}}\chi_{B_{k_0}}\right) < \sigma/8$. Then, in view of (4) and (10), we get $\widetilde{I_{\Phi}}\left(x_{n_{k_0}}\chi_{B\setminus B_{k_0}}\right) > 3\sigma/8k$. Moreover

$$B \setminus B_{k_0} = \left\{ i \in B : \frac{\min\left\{ \|x(i)\|_X, \left\|x_{n_{k_0}}(i)\right\|_X \right\}}{\max\left\{ \|x(i)\|_X, \left\|x_{n_{k_0}}(i)\right\|_X \right\}} \ge a \right\}.$$

Consequently, by (5) and (9), we obtain

$$c\epsilon \geq \widetilde{I_{\Phi}}(x\chi_B) \geq \widetilde{I_{\Phi}}\left(x\chi_{B\backslash B_{k_0}}\right) \geq \widetilde{I_{\Phi}}\left(ax_{n_{k_0}}\chi_{B\backslash B_{k_0}}\right)$$
$$\geq \beta \widetilde{I_{\Phi}}\left(x_{n_{k_0}}\chi_{B\backslash B_{k_0}}\right) \geq \frac{3\beta\sigma}{8k},$$

but this is a contradiction with (6), so (11) is proved. On the other hand, by Lemma 3, we get

$$\sum_{i \in B_{k_0}} \Phi\left(\left\| \frac{x(i) + x_{n_{k_0}}(i)}{2} \right\|_X \right)$$

$$\leq \sum_{i \in B_{k_0}} \frac{1}{2} (1 - \gamma) \left(\Phi\left(\|x(i)\|_X \right) + \Phi\left(\left\| x_{n_{k_0}}(i) \right\|_X \right) \right).$$

Hence

$$\widetilde{I_{\Phi}}\left(\frac{x+x_{n_{k_0}}}{2}\right) \le 1 - \frac{\gamma}{2}\widetilde{I_{\Phi}}\left(x_{n_{k_0}}\chi_{B_{k_0}}\right) \le 1 - p_2,$$

where $p_2 = \frac{\gamma \sigma}{16k}$. Finally, by Lemma 4(c), we conclude $\left\|\frac{x+x_{n_{k_0}}}{2}\right\| \leq 1-q_2$, where $q_2 \in (0,1)$ depends only on p_2 .

b) Assume that there exists a subsequence $(x_{n_k})_{k=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$ such that

(12)
$$\widetilde{I_{\Phi}}\left(2x_{n_k}\chi_{B_{(x_{n_k})}}\right) < \sigma/2$$

for every $k \in \mathbb{N}$. Denote still this subsequence (x_{n_k}) by (x_n) , $A_{(x_{n_k})} = A$ and $B_{(x_{n_k})} = B$. We will show that

(13)
$$\inf_{n \neq m} \widetilde{I_{\Phi}} \left(\left(x_n - x_m \right) \chi_A \right) \ge \sigma/2.$$

Indeed, if not, then, by (3) and (12), for some $n \neq m$ we would get

$$\sigma \leq \widetilde{I_{\Phi}} (x_n - x_m) = \widetilde{I_{\Phi}} ((x_n - x_m) \chi_A) + \widetilde{I_{\Phi}} ((x_n - x_m) \chi_B)$$
$$< \frac{\sigma}{2} + \frac{1}{2} \widetilde{I_{\Phi}} (2x_n \chi_B) + \frac{1}{2} \widetilde{I_{\Phi}} (2x_m \chi_B) < \sigma,$$

a contradiction, so (13) is true. Take $\lambda \in \mathbb{R}$ such that

$$(14) 0 < \lambda < \sigma/8.$$

For every $n \neq m$ there exists $i_0 \in A$ satisfying $||x_n(i_0) - x_m(i_0)||_X \geq \lambda ||x(i_0)||_X$. Indeed, if not, then $\frac{\sigma}{2} \leq \widetilde{I_{\Phi}}((x_n - x_m)\chi_A) < \lambda$ for some $n \neq m$. But this is a contradiction with (14). Moreover, we will prove that the following condition holds:

(+) there exist a subset $A_0 \subset A$ and a subsequence $(z_n) \subset (x_n)$ such that

$$||z_n(i) - z_m(i)||_X \ge \lambda ||x(i)||_X \text{ for all } n \neq m, i \in A_0 \text{ and}$$

$$||z_n(i) - z_m(i)||_X < \lambda ||x(i)||_X$$
 for every $n \neq m$ and $i \in A \setminus A_0$.

Denote by F_A the family of all nonempty subsets of the set A. We have card $A < \infty$. Hence card $F_A < \infty$.

1. Consider the element x_1 and the sequence $(x_n)_{n=2}^{\infty}$. Then there exist a subsequence $\left(x_n^{(1)}\right)_{n=1}^{\infty} \subset (x_n)_{n=2}^{\infty}$ and a subset $A_1 \in F_A$, such that

$$\begin{aligned} \left\| x_1(i) - x_n^{(1)}(i) \right\|_X &\geq \lambda \, \|x(i)\|_X \quad \text{for every } n \in \mathbb{N}, \, i \in A_1 \text{ and} \\ \left\| x_1(i) - x_n^{(1)}(i) \right\|_X &< \lambda \, \|x(i)\|_X \quad \text{for every } i \in A \setminus A_1 \text{ and } n \in \mathbb{N}. \end{aligned}$$

Denote $y_1^{(1)} = x_1$ and $y_{n+1}^{(1)} = x_n^{(1)}$ for every $n \in \mathbb{N}$.

2. Consider the element $x_1^{(1)}$ and the sequence $\left(x_n^{(1)}\right)_{n=2}^{\infty}$. Then there exist a subsequence $\left(x_n^{(2)}\right)_{n=1}^{\infty} \subset \left(x_n^{(1)}\right)_{n=2}^{\infty}$ and a subset $A_2 \in F_A$ such that $\left\|x_1^{(1)}(i) - x_n^{(2)}(i)\right\|_X \ge \lambda \|x(i)\|_X$ for every $n \in \mathbb{N}, i \in A_2$ and $\left\|x_1^{(1)}(i) - x_n^{(2)}(i)\right\|_X < \lambda \|x(i)\|_X$ for every $i \in A \setminus A_2$ and $n \in \mathbb{N}$.

Denote $y_1^{(2)} = x_1^{(1)}$ and $y_{n+1}^{(2)} = x_n^{(2)}$ for every $n \in \mathbb{N}$. Taking the next steps we conclude that there exists a set $A_0 \in F_A$, a sequence $(j_k)_{k=1}^{\infty}$ of natural numbers and a sequence of subsequences $(y_n^{(j_k)})_{n=1}^{\infty}$, $k = 1, 2, \ldots$ such that

$$\left(y_n^{(j_1)}\right)_{n=1}^{\infty} \supset \left(y_n^{(j_2)}\right)_{n=1}^{\infty} \supset \dots$$

and for every $k \in \mathbb{N}$ we get

$$\begin{split} \left\| y_1^{(j_k)}(i) - y_n^{(j_k)}(i) \right\|_X &\geq \lambda \, \|x(i)\|_X \quad \text{for every } n \in \mathbb{N}, n \geq 2, \, i \in A_0 \text{ and} \\ \left\| y_1^{(j_k)}(i) - y_n^{(j_k)}(i) \right\|_X &< \lambda \, \|x(i)\|_X \quad \text{for every } n \in \mathbb{N}, \, n \geq 2, \, i \in A \setminus A_0. \end{split}$$

Define $z_n = y_1^{(j_n)}$ for every $n \in \mathbb{N}$. In such a way we have constructed the sequence $(z_n)_{n=1}^{\infty}$ satisfying the condition (+). Denote this subsequence still by (x_n) . Furthermore, we will prove that

(15)
$$\widetilde{I_{\Phi}}\left(2x_n\chi_{A_0}\right) \ge \sigma/4$$

for every $n \in \mathbb{N}$ except at most two elements. Suppose conversely that $\widetilde{I_{\Phi}}(2x_n\chi_{A_0}) < \sigma/4$ for $n \in \{n_1, n_2\}$. By condition (+) we obtain $||x_{n_1}(i) - x_{n_2}(i)||_X < \lambda ||x(i)||_X$ for every $i \in A \setminus A_0$. Hence, by (13) and (14), we get

$$\frac{\sigma}{2} \leq \widetilde{I_{\Phi}} \left(\left(x_{n_1} - x_{n_2} \right) \chi_A \right) = \widetilde{I_{\Phi}} \left(\left(x_{n_1} - x_{n_2} \right) \chi_{A_0} \right) + \widetilde{I_{\Phi}} \left(\left(x_{n_1} - x_{n_2} \right) \chi_{A \setminus A_0} \right) \\ < \frac{1}{2} \widetilde{I_{\Phi}} \left(2x_{n_1} \chi_{A_0} \right) + \frac{1}{2} \widetilde{I_{\Phi}} \left(2x_{n_2} \chi_{A_0} \right) + \lambda < \frac{3\sigma}{8} ,$$

which is a contradiction.

Note that $||x(i)||_X > 0$ and $||x_n(i)||_X > 0$ for every $i \in A$ and $n \in \mathbb{N}$. For every $i \in A_0$ define the sequence

$$(y_n(i)) = \left(\frac{x_n(i)}{\|x(i)\|_X}\right)_{n=1}^{\infty} \subset X.$$

By condition (+) we conclude that for every $i \in A_0$ we have sep $\{y_n(i)\}_X \ge \lambda$. Moreover $\|y_n(i)\|_X \in [a, 1/a]$ for every $n \in \mathbb{N}$ and $i \in A$. Let $i_1 \in A_0$. Passing to a subsequence if necessary, we may assume that $\lim_{n\to\infty} \|y_n(i_1)\|_X = y_1 \in [a, 1/a]$. Furthermore, applying Lemma 2, we conclude that there exist a number $\lambda_1 = \lambda_1(\lambda, y_1)$ and a subsequence $(y_{n_k})_{k=1}^{\infty}$ of $(y_n)_{n=1}^{\infty}$ such that

$$\sup \{y_{n_k}(i_1) / \|y_{n_k}(i_1)\|_X\}_X \ge \lambda_1.$$

Moreover, the function $\lambda_1(\lambda, \cdot)$ is nonincreasing. Let $\lambda_0 = \lambda_1(\lambda, 1/a)$. Then

$$\sup \{y_{n_k}(i_1) / \|y_{n_k}(i_1)\|_X\}_X \ge \lambda_0.$$

Take $i_2 \in A_0$ and consider a sequence $(y_{n_k}(i_2))_{k=1}^{\infty}$. Similarly we deduce that there exists a subsequence $(y_{n_{k_j}})_{j=1}^{\infty} \subset (y_{n_k})_{k=1}^{\infty}$ such that

$$\sup\left\{y_{n_{k_j}}(i_2)/\left\|y_{n_{k_j}}(i_2)\right\|_X\right\}_X \ge \lambda_0.$$

Because card $A < \infty$, so in such a way we can find a sequence $(v_n)_{n=1}^{\infty} \subset (y_n)_{n=1}^{\infty}$ satisfying

$$\sup \left\{ v_n(i) / \| v_n(i) \|_X \right\}_X \ge \lambda_0$$

for every $i \in A_0$. Denote still this subsequence by (y_n) . But

$$\sup \{y_n(i) / \|y_n(i)\|_X\}_X = \sup \{x_n(i) / \|x_n(i)\|_X\}_X.$$

Basing on Theorem 1 take a number $\delta_0 = \delta_0(\lambda_0)$. For every $i \in A_0$ we consider an element $x(i) \in X \setminus \{0\}$ and a sequence $(x_n(i))$ in $X \setminus \{0\}$ with sep $\left(\frac{x_n(i)}{\|x_n(i)\|_X}\right) \ge \lambda_0$. Hence there exists a number $n_0 = n_0(i) \in \mathbb{N}$ such that

(16)
$$\begin{aligned} \left\| \frac{x(i) + x_{n_0}(i)}{2} \right\|_X \\ \leq \frac{\|x(i)\|_X + \|x_{n_0}(i)\|_X}{2} \left(1 - \frac{2\delta_0 \min\left\{ \|x(i)\|_X, \|x_{n_0}(i)\|_X \}}{\|x(i)\|_X + \|x_{n_0}(i)\|_X} \right) \end{aligned}$$

For every $i \in A_0$ and every sequence $(u_n(i))_{n=1}^{\infty} \subset (x_n(i))_{n=1}^{\infty} \subset X$, define

$$N(i, (u_n(i))) = \{n = n(i) \in \mathbb{N} : x(i), u_n(i) \text{ satisfies (16)} \}$$

Let $i_1 \in A_0$. The property (β) of X implies that card $N(i_1, (x_n(i_1))) = \infty$. Thus we can find in X a subsequence $(x_{n_k}(i_1))_{k=1}^{\infty} \subset (x_n(i_1))_{n=1}^{\infty}$ such that $x(i_1), x_{n_k}(i_1)$ satisfies the inequality (16) for every $k \in \mathbb{N}$. Consider the sequence $(x_{n_k}(i_2))_{k=1}^{\infty}$. Similarly card $N(i_2, (x_{n_k}(i_2))) = \infty$. Consequently there exists a subsequence $(x_{n_{k_j}}(i_2))_{j=1}^{\infty} \subset (x_{n_k}(i_2))_{k=1}^{\infty}$ such that $x(i_2), x_{n_{k_j}}(i_2)$ satisfies the inequality (16) for every $j \in \mathbb{N}$. After a finite number of steps we may construct in $l_{\Phi}(X)$ a subsequence $(x_m)_{m=1}^{\infty} \subset (x_n)_{n=1}^{\infty}$ such that for every $i \in A_0, x(i), x_m(i)$ satisfies the inequality (16) for every $m \in \mathbb{N}$. Because of the fact that

$$\frac{\min\{\|x(i)\|_X, \|x_m(i)\|_X\}}{\max\{\|x(i)\|_X, \|x_m(i)\|_X\}} \ge a \text{ for every } m \in \mathbb{N} \text{ and } i \in A$$

we obtain

$$\left\|\frac{x(i) + x_m(i)}{2}\right\|_X \le \frac{1}{2} \left(\|x(i)\|_X + \|x_m(i)\|_X\right) (1 - \alpha),$$

for every $m \in \mathbb{N}$ and $i \in A_0$, where $\alpha = \frac{2\delta_0 a}{1+a}$. Then

$$\sum_{i \in A_0} \Phi\left(\left\| \frac{x(i) + x_m(i)}{2} \right\|_X \right) \le \sum_{i \in A_0} \frac{1}{2} (1 - \alpha) \left(\Phi\left(\|x(i)\|_X \right) + \Phi\left(\|x_m(i)\|_X \right) \right)$$

for every $m \in \mathbb{N}$. Applying (15), it is easy to finish the proof in the same way as in the case II.a).

Remark. It is worth to mention that the property (β) does not lift from X into $L_{\Phi}(X)$ in the case when L_{Φ} is a function Orlicz space. It is enough to consider the Lebesgue-Bochner space $L_p(\mu, X)$ when $1 and <math>\mu$ is the Lebesgue measure on [0, 1]. Then if X is not uniformly convex, then $L_p(\mu, X)$ has not even the uniformly Kadec Klee property (Theorem 3.4.9 in [16]). Moreover, if $L_{\Phi}(X) \in (\beta)$, then obviously $L_{\Phi} \in (\beta)$ and $X \in (\beta)$. But $L_{\Phi} \in (\beta)$ iff $L_{\Phi} \in (\mathbf{UC})$ (see [5]). If we additionally assume that $X \in (\mathbf{UC})$, then $L_{\Phi}(X) \in (\mathbf{UC})$ (Theorem 3.4.3 in [16]).

As an immediate consequence of Theorem 2, we get the following characterization of the property (β) in Orlicz sequence spaces with the Luxemburg norm proved directly in [5].

Corollary 1. Let Φ be an Orlicz function. The following statements are equivalent:

- (a) l_{Φ} has the property (β);
- (b) l_{Φ} is (**NUC**);
- (c) l_{Φ} has the property (**D**);
- (d) Φ and Ψ satisfy the δ_2 -condition, i.e. l_{Φ} is reflexive.

PROOF: It is enough to apply Theorem 2 with $X = \mathbb{R}$ which is uniformly convex, so it has also the property (β) .

Corollary 2. The Lebesgue-Bochner sequence space $l^p(X)$ $(1 has the property (<math>\beta$) iff X has the property (β).

PROOF: The sequence space l_p is an Orlicz sequence space generated by the Orlicz function $\Phi(u) = |u|^p$ satisfying all the assumptions of Theorem 2.

References

- [1] Alherk G., Hudzik H., Uniformly non- $l_n^{(1)}$ Musielak-Orlicz spaces of Bochner type, Forum Math. 1 (1989), 403–410.
- [2] Cerda J., Hudzik H., Mastylo M., Geometric properties of Köthe Bochner spaces, Math. Proc. Cambridge Philos. Soc. 120 (1996), 521–533.
- [3] Chen S., Hudzik H., On some convexities of Orlicz and Orlicz-Bochner spaces, Comment. Math. Univ. Carolinae 29.1 (1988), 13–29.
- [4] Clarkson J.A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [5] Cui Y., Pluciennik R., Wang T., On property (β) in Orlicz spaces, Arch. Math. 69 (1997), 57–69.
- [6] Greim P., Strongly exposed points in Bochner L^p spaces, Proc. Amer. Math. Soc. 88 (1983), 81–84.
- [7] Hudzik H., Uniformly non-l_n⁽¹⁾ Orlicz spaces with Luxemburg norm, Studia Math. 81.3 (1985), 271-284.
- [8] Hudzik H., Landes T., Characteristic of convexity of Köthe function spaces, Math. Ann. 294 (1992), 117–124.
- [9] Huff R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749.
- [10] Kamińska A., Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory 47 (1986), 302–322.
- [11] Kamińska A., Rotundity of Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 29 (1981), no. 3–4, 137–144.
- [12] Kolwicz P., On property (β) in Banach lattices, Calderón-Lozanowskii and Orlicz-Lorentz spaces, submitted.
- [13] Kolwicz P., Płuciennik R., P-convexity of Bochner-Orlicz spaces, Proc. Amer. Math. Soc. 126.8 (1998), 2315–2322.
- [14] Kutzarowa D.N., An isomorphic characterization of property (β) of Rolewicz, Note Mat. 10.2 (1990), 347–354.
- [15] Kutzarowa D.N., Maluta E., Prus S., Property (β) implies normal structure of the dual space, Rend. Circ. Math. Palermo 41 (1992), 335–368.
- [16] Lin P.K., Köthe Bochner Function Spaces, to appear.
- [17] Montesinos V., Drop property equals reflexivity, Studia Math. 87 (1987), 93–100.
- [18] Pluciennik R., On characterization of strongly extreme points in Köthe Bochner spaces, Rocky Mountain J. Math. 27.1 (1997), 307–315.
- [19] Pluciennik R., Points of local uniform rotundity in Köthe Bochner spaces, Arch. Math. 70 (1998), 479–485.
- [20] Rolewicz S., On drop property, Studia Math. 85 (1987), 27–35.
- [21] Rolewicz S., On Δ -uniform convexity and drop property, Studia Math. 87 (1987), 181–191.
- UL. PIOTROWO 3A, 60-965 POZNAŃ, POLAND

E-mail: KOLWICZ@math.put.poznan.pl

(Received January 18, 2000, revised June 6, 2000)